首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we report the application of LC‐MS based on two different LC‐MS systems to mycotoxin analysis. The mycotoxins were extracted with an ACN/water/acetic acid mixture and directly injected into a LC‐MS/MS system without any dilution procedure. First, a sensitive and reliable HPLC‐ESI‐MS/MS method using selected reaction monitoring on a triple quadrupole mass spectrometer (TSQ Quantum Ultra AM) has been developed for determining 32 mycotoxins in crude extracts of wheat and maize. This method was operated both in positive and in negative ionization modes in two separate chromatographic runs. The method was validated by studies of spiked recoveries, linearity, matrix effect, intra‐assay precision and sensitivity. Further, we have developed and evaluated a method based on accurate mass measurements of extracted target ions in full scan mode using micro‐LC‐LTQ‐Orbitrap as a tool for fast quantitative analysis. Both instruments exhibited very high sensitivity and repeatability in positive ionization mode. Coupling of micro‐LC to Orbitrap technology was not applicable to the negatively ionizable compounds. The LC triple quadrupole MS method has proved to be stable in quantitation, as it is with respect to the matrix effects of grain samples.  相似文献   

2.
A sensitive and efficient liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of piperaquine (PQ) and its N ‐oxidated metabolite (PQ‐M) in plasma. A simple protein precipitation procedure was used for sample preparation. Adequate chromatographic retention was achieved on a C18 column under gradient elution with acetonitrile and 2 mm aqueous ammonium acetate containing 0.15% formic acid and 0.05% trifluoroacetic acid. A triple‐quadrupole mass spectrometer equipped with an electrospray source was set up in the positive ion mode and multiple reaction monitoring mode. The method was linear in the range of 2.0–400.0 ng/mL for PQ and 1.0–50.0 ng/mL for PQ‐M with suitable accuracy, precision and extraction recovery. The lower limits of detection (LLOD) were established at 0.4 and 0.2 ng/mL for PQ and PQ‐M, respectively, using 40 μL of plasma sample. The matrix effect was negligible under the current conditions. No effect was found for co‐administrated artemisinin drugs or hemolysis on the quantification of PQ and PQ‐M. Stability testing showed that two analytes remained stable under all relevant analytical conditions. The validated method was successfully applied to a pharmacokinetic study performed in rats after a single oral administration of PQ (60 mg/kg).  相似文献   

3.
Glaucine ((S)‐5,6,6a,7‐tetrahydro‐1,2,9,10‐tetramethoxy‐6‐methyl‐4H‐dibenzo [de,g]quinoline) is an isoquinoline alkaloid and main component of Glaucium flavum (Papaveraceae). It was described to be consumed as recreational drug alone or in combination with other drugs. Besides this, glaucine is used as therapeutic drug in Bulgaria and other countries as cough suppressant. Currently, there are no data available concerning metabolism and toxicological analysis of glaucine. To study both, glaucine was orally administered to Wistar rats and urine was collected. For metabolism studies, work‐up of urine samples consisted of protein precipitation or enzymatic cleavage followed by solid‐phase extraction. Samples were afterwards measured by liquid chromatography (LC) coupled to low or high‐resolution mass spectrometry (HR‐MS). The phase I and II metabolites were identified by detailed interpretation of the corresponding fragmentations, which were further confirmed by determination of their elemental composition using HR‐MS. From these data, the following metabolic pathways could be proposed: O‐demethylation at position 2, 9 and 10, N‐demethylation, hydroxylation, N‐oxidation and combinations of them as well as glucuronidation and/or sulfation of the phenolic metabolites. For monitoring a glaucine intake in case of abuse or poisoning, the O‐ and N‐demethylated metabolites were the main targets for the gas chromatography‐MS and LC‐MSn screening approaches described by the authors. Both allowed confirming an intake of glaucine in rat urine after a dose of 2 mg/kg body mass corresponding to a common abuser's dose. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
张素艳  耿昱  郭寅龙  王浩  吕龙 《中国化学》2005,23(7):870-874
High performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS) have been utilized to analyze the synthesized 2-(2-arylaminomethylphenoxy)pyrimidine derivatives, which are a new kind of environmentally benign herbicides and have passed the temporary pesticide registration. The identification of main product and impurities has been achieved according to the UV and mass spectra. Moreover, one impurity, introduced by the raw material in the last step of the synthetic route, was identified by GC-MS analysis. It can be concluded that the combination of chromatography and mass spectrometry, including LC-MS and GC-MS, provided a vital tool of the pesticide science.  相似文献   

5.
In order to illustrate the main biotransformation pathways of vaccarin in vivo, metabolites of vaccarin in rats were identified using a specific and sensitive high‐performance liquid chromatography–electrospray ionization linear ion trap mass spectrometry (LTQ XL?) method. The rats were administered a single dose (200 mg/kg) of vaccarin by oral gavage. By comparing their changes in molecular masses (ΔM), retention times and spectral patterns with those of the parent drug, the parent compound and six metabolites were found in rat urine after oral administration of vaccarin. The parent compound and five metabolites were detected in rat plasma. In heart, liver and kidney samples, respectively, one, four and three metabolites were identified, in addition to the parent compound. Three metabolites, but no trace of parent drug, were found in the rat feces. This is the first systematic metabolism study of vaccarin in vivo. The biotransformation pathways of vaccarin involved methylation, hydroxylation, glycosylation and deglycosylation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In Cannabis sativa, Δ9‐Tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A) is the non‐psychoactive precursor of Δ9‐tetrahydrocannabinol (Δ9‐THC). In fresh plant material, about 90% of the total Δ9‐THC is available as Δ9‐THCA‐A. When heated (smoked or baked), Δ9‐THCA‐A is only partially converted to Δ9‐THC and therefore, Δ9‐THCA‐A can be detected in serum and urine of cannabis consumers. The aim of the presented study was to identify the metabolites of Δ9‐THCA‐A and to examine particularly whether oral intake of Δ9‐THCA‐A leads to in vivo formation of Δ9‐THC in a rat model. After oral application of pure Δ9‐THCA‐A to rats (15 mg/kg body mass), urine samples were collected and metabolites were isolated and identified by liquid chromatography‐mass spectrometry (LC‐MS), liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) and high resolution LC‐MS using time of flight‐mass spectrometry (TOF‐MS) for accurate mass measurement. For detection of Δ9‐THC and its metabolites, urine extracts were analyzed by gas chromatography‐mass spectrometry (GC‐MS). The identified metabolites show that Δ9‐THCA‐A undergoes a hydroxylation in position 11 to 11‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A (11‐OH‐Δ9‐THCA‐A), which is further oxidized via the intermediate aldehyde 11‐oxo‐Δ9‐THCA‐A to 11‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A‐COOH). Glucuronides of the parent compound and both main metabolites were identified in the rat urine as well. Furthermore, Δ9‐THCA‐A undergoes hydroxylation in position 8 to 8‐alpha‐ and 8‐beta‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A, respectively, (8α‐Hydroxy‐Δ9‐THCA‐A and 8β‐Hydroxy‐Δ9‐THCA‐A, respectively) followed by dehydration. Both monohydroxylated metabolites were further oxidized to their bishydroxylated forms. Several glucuronidation conjugates of these metabolites were identified. In vivo conversion of Δ9‐THCA‐A to Δ9‐THC was not observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The levels of urinary catecholamine metabolites, such as homovanillic acid (HVA) and vanillylmandelic acid, are routinely used as a clinical tool in the diagnosis and follow‐up of neuroblastoma (NB) patients. Recently, in the Clinical Pathology Laboratory Unit of G. Gaslini Children Hospital, a commercial method that employs liquid chromatography coupled to electrochemical detection (LC‐EC) has been introduced for the measurement of these metabolites in the routine laboratory practice. Using this LC‐EC method, an unknown peak could be observed only in samples derived from NB patients. To investigate the nature of this peak, we used a combination of liquid chromatography‐time‐of‐flight mass spectrometry (LC‐TOF‐MS) and liquid chromatography‐ion trap tandem mass spectrometry (LC‐IT‐MS). The first approach was used to obtain the elemental composition of the ions present in this new signal. To get additional structural information useful for the elucidation of unknown compounds, the ion trap analyzer was exploited. We were able to identify not just one, but three unknown signals in urine samples from NB patients which corresponded to three conjugated products of HVA: HVA sulfate and two glucuronoconjugate isomers. The enzymatic hydrolysis with β‐glucuronidase confirmed the proposed structures, while the selective alkaline hydrolysis allowed us to distinguish the difference between phenol‐ and acyl‐glucuronide of HVA. The latter was the unknown peak observed in LC‐EC separations of urine samples from NB patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Tanshinol borneol ester (DBZ) is a potential drug candidate composed of danshensu and borneol. It shows anti‐ischemic and anti‐atherosclerosis activity. However, little is known about its metabolism in vivo. This research aimed to elucidate the metabolic profile of DBZ through analyzing its metabolites using high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight mass spectrometry. Chromatographic separation was performed on an Agilent TC‐C18 column (150 × 4.6 mm, 5.0 μm) with gradient elution using methanol and water containing 0.2% (v/v) formic acid as the mobile phase. Metabolite identification involved analyzing the retention behaviors, changes in molecular weights and MS/MS fragment patterns of DBZ and its metabolites. As a result, 20 potential metabolites were detected and tentatively identified in rat plasma, urine and feces after administration of DBZ. DBZ could be metabolized to O‐methylated DBZ, DBZ‐O‐glucuronide, O‐methylated DBZ‐O‐glucuronide, hydroxylated DBZ and danshensu. Danshensu, a hydrolysis product of DBZ, could further be transformed into 12 metabolites. The proposed method was confirmed to be a reliable and sensitive alternative for characterizing metabolic pathways of DBZ and providing valuable information on its druggability.  相似文献   

9.
A quantitative analysis of polyamines in lung cancer patient fingernails by the combination of 4‐(N,N‐dimethylaminosulfonyl)‐7‐fluoro‐2,1,3‐benzoxadiazole derivatives and liquid chromatography–electrospray ionization tandem mass spectrometry is described. The reaction of the reagent with eight kinds of polyamines, that is, N1‐acetylputrescine (N1‐actPUT), N8‐acetylspermidine, N1‐acetylspermine, 1,3‐diaminopropane, putrescine (PUT), cadaverine, spermidine and spermine (SPM) effectively occurs at 60 °C for 30 min. The detection limits (signal‐to‐noise ratio 5) were 5–100 fmol. A good linearity was achieved from the calibration curves, which was obtained by plotting the peak area ratios of the analytes relative to the internal standard (IS), that is, 1,6‐diaminohexane, vs the injected amounts of polyamines (r2 > 0.996), and the intra‐day and inter‐day assay precisions were <9.84%. Furthermore, the recoveries (%) of the polyamines spiked in the human fingernails were 89.14–110.64. The present method was applied to human fingernail samples from 17 lung cancer patients and 39 healthy volunteers. The polyamine concentration was different based on the gender, that is, the N1‐actPUT and PUT contents were 3.10 times and 2.56 times higher in healthy men than in women, respectively. Additionally, in the lung cancer patient group, as compared with the healthy volunteers, the concentrations of SPM had a statistically significant (p < 0.05) correlation. Therefore, because the proposed method provides a good mass accuracy and the trace detection of the polyamines in human fingernails, this analytical technique could be a noninvasive technique to assist in the diagnosis and assessment of disease activity in lung cancer patients. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Analytical aspects related to the assay of pentoxifylline (PTX), lisofylline (M1) and carboxypropyl dimethylxanthine (M5) metabolites are discussed through comparison of two alternative analytical methods based on liquid chromatography separation and atmospheric pressure electrospray ionization tandem mass spectrometry detection. One method is based on a ‘pure’ reversed‐phase liquid chromatography mechanism, while the second one uses the additional polar interactions with embedded amide spacers linking octadecyl moieties to the silicagel surface (C‐18 Aqua stationary phase). In both cases, elution is isocratic. Both methods are equally selective and allows separation of unknowns (four species associated to PTX, two species associated to M1) detected through specific mass transitions of the parent compounds and owning respective structural confirmation. Plasma concentration–time patterns of these compounds follow typical metabolic profiles. It has been advanced that in‐vivo formation of conjugates of PTX and M1 is possible, such compounds being cleaved back to the parent ones within the ion source. The first method was associated with a sample preparation procedure based on plasma protein precipitation by strong organic acid addition. The second method used protein precipitation by addition of a water miscible organic solvent. Both analytical methods were fully validated and used to assess bioequivalence between a prolonged release generic formulation and the reference product, under multidose and single dose approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Polyphyllin I (PPI), a natural steroidal saponin originating from rihzome of Paris polyphylla , is a potential anticancer candidate. Previous pharmacokinetics study showed that the oral bioavailability of PPI was very low, which suggested that certain amount of PPI might be metabolized in vivo . However, to date, information regarding the final metabolic fates of PPI is very limited. In this study, metabolites of PPI and their pharmacokinetics in rats were investigated using UPLC‐QTOF‐MS/MS and LC‐TQ‐MS/MS. A total of seven putative metabolites, including six phase I and one phase II metabolites, were detected and identified with three exact structures by comparison with authentic standards for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. The pharmacokinetics of prosapogenin A, trillin and diosgenin, three deglycosylation metabolites of PPI with definite anticancer effects, were further studied, which suggested that the metabolites underwent a prolonged absorption and slower elimination after intragastric administration of PPI at the dose of 500 mg/kg. This study provides valuable and new information on the metabolic fate of PPI, which will be helpful in further understanding its mechanism of action.  相似文献   

12.
Methenolone (17β‐hydroxy‐1‐methyl‐5α‐androst‐1‐en‐3‐one) misuse in doping control is commonly detected by monitoring the parent molecule and its metabolite (1‐methylene‐5α‐androstan‐3α‐ol‐17‐one) excreted conjugated with glucuronic acid using gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography mass spectrometry (LC‐MS) for the parent molecule, after hydrolysis with β‐glucuronidase. The aim of the present study was the evaluation of the sulfate fraction of methenolone metabolism by LC‐high resolution (HR)MS and the estimation of the long‐term detectability of its sulfate metabolites analyzed by liquid chromatography tandem mass spectrometry (LC‐HRMSMS) compared with the current practice for the detection of methenolone misuse used by the anti‐doping laboratories. Methenolone was administered to two healthy male volunteers, and urine samples were collected up to 12 and 26 days, respectively. Ethyl acetate extraction at weak alkaline pH was performed and then the sulfate conjugates were analyzed by LC‐HRMS using electrospray ionization in negative mode searching for [M‐H]? ions corresponding to potential sulfate structures (comprising structure alterations such as hydroxylations, oxidations, reductions and combinations of them). Eight sulfate metabolites were finally detected, but four of them were considered important as the most abundant and long term detectable. LC clean up followed by solvolysis and GC/MS analysis of trimethylsilylated (TMS) derivatives reveal that the sulfate analogs of methenolone as well as of 1‐methylene‐5α‐androstan‐3α‐ol‐17‐one, 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one and 16β‐hydroxy‐1‐methyl‐5α‐androst‐1‐ene‐3,17‐dione were the major metabolites in the sulfate fraction. The results of the present study also document for the first time the methenolone sulfate as well as the 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one sulfate as metabolites of methenolone in human urine. The time window for the detectability of methenolone sulfate metabolites by LC‐HRMS is comparable with that of their hydrolyzed glucuronide analogs analyzed by GC‐MS. The results of the study demonstrate the importance of sulfation as a phase II metabolic pathway for methenolone metabolism, proposing four metabolites as significant components of the sulfate fraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Rapid, simple and reliable HPLC/UV and LC‐ESI‐MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C30 column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC‐ESI‐MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC‐ESI‐MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC‐ESI‐MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC‐ESI‐MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Like many new designer drugs of abuse, synthetic cannabinoids (SC) have structural or positional isomers which may or may not all be regulated under law. Differences in acute toxicity may exist between isomers which impose further burden in the fields of forensic toxicology, medicine and legislation. Isomer differentiation therefore becomes crucial from these standpoints as new designer drugs continuously emerge with just minor positional modifications to their preexisting analogs. The aim of this study was to differentiate the positional isomers of JWH‐081. Purchased standard compounds of JWH‐081 and its positional isomers were analyzed by gas chromatography‐electron ionization‐mass spectrometry (GC‐EI‐MS) first in scan mode to investigate those isomers who could be differentiated by EI scan spectra. Isomers with identical or near‐identical EI spectra were further subjected to GC‐tandem mass spectrometry (MS/MS) analysis with appropriate precursor ions. EI scan was able to distinguish 3 of the 7 isomers: 2‐methoxy, 7‐methoxy and 8‐methoxy. The remaining isomers exhibited near‐identical spectra; hence, MS/MS was performed by selecting m/z 185 and 157 as precursor ions. 3‐Methoxy and 5‐methoxy isomers produced characteristic product ions that enabled the differentiation between them. Product ion spectrum of 6‐methoxy isomer resembled that of JWH‐081; however, the relative ion intensities were clearly different from one another. The combination of EI scan and MS/MS allowed for the regioisomeric differentiation of the targeted compounds in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Rapid, simple and reliable HPLC/DAD and LC‐ESI‐MS methods for the simultaneous determination of baicalin and forsythin in the traditional Chinese medicinal preparation Shuanghuanglian oral liquid were described and validated. The separation condition for HPLC/DAD was optimized using a BDS hypersil C18 column (Thermo, 2.1 × 150 mm, particle size 5 μm) by gradient elution using methanol‐0.2 % ammonium acetate as the mobile phase. The suitable detection wavelength was set at 277 nm for the quantitative analysis of baicalin and forsythin in this method. Some operational parameters of the ESI interface were optimized, negative m/z 445[M?H]? for baicalin and negative m/z 593[M+CH3COO]? for forsythin, positive m/z 447[M+H]+ for baicalin and positive m/z 552[M+NH 4]+ for forsythin, respectively. These HPLC/DAD and LC‐ESI‐MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). These methods can be used as a complementary method for the commercial quality control of Shuanghuanglian oral liquid and its pharmaceutical preparations.  相似文献   

17.
Yiqifumai Injection is a lyophilized powder preparation widely used to treat coronary heart disease. However, its in vivo bioactive components and pharmacokinetic behavior remain unknown. Therefore a sensitive and specific LC–MS/MS was developed and validated for the simultaneous quantification of eight saponins and four lignans in beagle dog plasma. The plasma samples were pretreated by protein precipitation with methanol–acetonitrile (1:1, v/v). Chromatographic separation of all the 12 analytes and estazolam (internal standard, IS) was successfully accomplished on an Ultimate® XB‐C8 column (100 × 2.1 mm, 3 μm) with a gradient elution system. The total running time was 8 min with a flow rate of 0.40 mL/min. Acquisition of mass spectrometric data was performed via positive electrospray ionization in multiple reaction monitoring mode. The assay was fully validated in terms of selectivity, linear range, lower limit of quantitation, precision, accuracy, matrix effect, recovery and stability. This validated method was successfully applied to the pharmacokinetics of 12 bioactive components after intravenous administration of Yiqifumai Injection to beagle dogs at a dose of 0.541 g/kg.  相似文献   

18.
1‐Triacontanol (TA), a member of long chain fatty alcohol, has recently been received great attention owing to its antitumor activity. In this study, an accurate, sensitive and selective gas chromatography–tandem mass spectrometry method was developed and validated for the quantification of TA in beagle plasma using 1‐octacosanal as the internal standard (IS) for the first time. With temperature programming, chromatographic separation was carried out on an HP‐5MS column, using helium as carrier gas and argon as collision gas, both at a flow rate of 1 mL/min. TA was analyzed using positive ion electrospray ionization in multiple‐reaction monitoring mode, with the precursor to product ion transitions of m/z 495.6 → 97.0 and m/z 467.5 → 97.0 for TA and the IS, respectively. The lower limit of quantitation, linearity, intra‐ and interday precision, accuracy, stability, extraction recovery and matrix effect of TA were within the acceptable limits. The validated method was successfully applied to a pharmacokinetic study of TA in beagles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
LC‐ ESI‐ MS/MS simultaneous bioanalytical method was developed to determine acitretin and its metabolite isoacitretin in human plasma using acitretin‐d3 used as the internal standard for both analytes. The compounds were extracted using protein precipitation coupled with liquid–liquid extraction with flash freezing technique. Negative mass transitions (m/z) of acitretin, isoacitretin and acitretin‐d3 were detected in multiple reactions monitoring (MRM) mode at 325.4 → 266.3, 325.2 → 266.1 and 328.3 → 266.3, respectively, with a turbo ion spray interface. The chromatographic separation was achieved on an Ascentis‐RP amide column (4.6 × 150 mm, 5 µm) with mobile phase delivered in isocratic mode. The method was validated over a concentration range of 1.025–753.217 ng/mL for acitretin and 0.394–289.234 ng/mL for isoacitretin with a limit of quantification of 1.025 and 0.394 ng/mL. The intra‐day and inter‐day precisions were below 8.1% for acitretin and below 13.8% for isoacitretin, while accuracy was within ±7.0 and ±10.6% respectively. For the first time, the best possible conditions for plasma stability of acitretin and isoacitretin are presented and discussed with application to clinical samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The degradation of the chloracetamide herbicide acetochlor has been studied under simulated ozonation treatment plant conditions. The degradation of acetochlor included the formation of several degradation products that were identified using GC/ion‐trap mass spectrometry with EI and CI and HPLC/electrospray‐QqTOF mass spectrometry. Thirteen ozonation products of acetochlor have been identified. Ozonation of the deuterated herbicide combined to MSn and high‐resolution mass measurement allowed effective characterization of the degradation products. At the exception of one of them, the product B (2‐chloro‐2', ethyl‐6', methyl‐acetanilide), none of the identified degradation products has been already reported in the literature. Post‐ozonation kinetics studies revealed that the concentrations of most degradation products evolved noticeably with time, particularly during the first hours following the ozonation treatment. This raises concerns about the fate of degradation products in the effluents of treatment plants and suggests the need for a better control on these products if their toxicity was demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号