首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precise density and sound velocity measurements have been carried out for aqueous solutions of PPG725 in the absence and presence of (0.2 and 0.5) mol · kg−1 amino acids: alanine, glycine, serine and proline, and also for aqueous solutions of these amino acids in the absence and presence of 0.01 w/w PPG725 at T = (288.15, 293.15, 298.15, 303.15 and 308.15) K. From the experimental density and sound velocity values, the apparent molar volume and isentropic compressibility have been obtained and extrapolated to infinite dilution. The infinite dilution apparent molar properties for transfer of PPG from water to aqueous amino acids solutions and also those for transfer of amino acids from water to aqueous PPG solutions have been studied. Temperature dependency of the infinite dilution apparent molar volume was utilised to determine structure-breaker or structure-maker effects of the solutes. Hydration numbers of the amino acids in the investigated aqueous solutions have been evaluated from the volumetric and compressibility properties. All results are discussed based on the salting-out aptitude of the amino acids (hydrophilic + hydrophobic) interactions and (hydrophobic + hydrophobic) interactions occurred between PPG and the investigated amino acids.  相似文献   

2.
(Vapour + liquid) equilibrium data (water activity, vapour pressure, osmotic coefficient, and activity coefficient) of binary aqueous solutions of 1-hexyl-3-methylimidazolium chloride ([C6mim][Cl]), methyl potassium malonate, and ethyl potassium malonate and ternary {[C6mim][Cl] + methyl potassium malonate} and {[C6mim][Cl] + ethyl potassium malonate} aqueous solutions were obtained through the isopiestic method at T = 298.15 K. These results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solutions at molality about 0.4 mol · kg−1. The constant water activity lines of all the ternary systems investigated show small negative deviations from the linear isopiestic relation (Zdanovskii–Stokes–Robinson rule) derived using the semi-ideal hydration model. The density and speed of sound measurements were carried out on solutions of methyl potassium malonate and ethyl potassium malonate in water and of [C6mim][Cl] in aqueous solutions of 0.25 mol · kg−1 methyl potassium malonate and ethyl potassium malonate at T = (288.15 to 308.15) K at atmospheric pressure. From the experimental density and speed of sound data, the values of the apparent molar volume, apparent molar isentropic compressibility and excess molar volume were evaluated and from which the infinite dilution apparent molar volume and infinite dilution apparent molar isentropic compressibility were calculated at each temperature. Although, there are no clear differences between the values of the apparent molar volume of [C6mim][Cl] in pure water and in methyl potassium malonate or ethyl potassium malonate aqueous solutions, however, the results show a positive transfer isentropic compressibility of [C6mim][Cl] from pure water to the methyl potassium malonate or ethyl potassium malonate aqueous solutions. The results have been interpreted in terms of the solute–water and solute–solute interactions.  相似文献   

3.
The alkyl chain length of 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = propyl (C3), hexyl (C6), heptyl (C7), and octyl (C8)) was varied to prepare a series of room-temperature ionic liquids (RTILs), and experimental measurements of density and speed of sound at different temperatures ranging from (288.15 to 308.15) K for their aqueous and methanolic solutions in the dilute concentration region (0.01 to 0.30) mol · kg?1 were taken. The values of the compressibilities, expansivity and apparent molar properties for [Cnmim][Br] in aqueous and methanolic solutions were determined at the investigated temperatures. The obtained apparent molar volumes and apparent molar isentropic compressibilities were fitted to the Redlich–Mayer and the Pitzer’s equations from which the corresponding infinite dilution molar properties were obtained. The values of the infinite dilution molar properties were used to obtain some information about solute–solvent and solute–solute interactions. The thermodynamic properties of investigated ionic liquids in aqueous solutions have been compared with those in methanolic solutions. Also, the comparison between thermodynamic properties of investigated solutions and those of electrolyte solutions, polymer solutions, cationic surfactant solutions and tetraalkylammonium salt solutions have been made.  相似文献   

4.
Apparent molar volume (V2,ϕ) and apparent molar isentropic compressibility (Ks,2,ϕ) of diclofenac sodium salt (DSS) drug within the concentration range of (0.001 to 0.008) mol · kg−1 in (0.01, 0.03 and 0.05) mol · kg−1 aqueous glycine and l-proline solutions are computed from the experimental density (ρ) and speed of sound (u) values at T = (293.15 to 313.15) K and atmospheric pressure. Derived parameters such as partial molar properties, transfer partial molar properties, hydration numbers and Hepler’s constant are computed from the data of V2,ϕ and Ks,2,ϕ. These parameters have been used to understand the effect of temperature on interactions between DSS drug and aqueous glycine/l-proline solution. Furthermore, the structure making and breaking ability of DSS drug in probed solutions are analysed at experimental conditions.  相似文献   

5.
Densities, ρ, speed of sound, u for glycine, l-alanine have been measured in aqueous solutions of dipotassium hydrogen phosphate (DKHP) ranging from 0.2, 0.4, 0.6 and 0.8 mol·kg−1 at temperatures T = (288.15, 298.15, 308.15 and 318.15) K. The different parameters such as apparent molar volume, limiting apparent molar volume, transfer volume, partial molar expansibility have been derived from density data. Experimental speeds of sound data were used to estimate apparent molar adiabatic compressibility, limiting apparent molar adiabatic compressibility, transfer parameter and hydration number. These parameters have been discussed in the light of ion-ion and ion-solvent interactions.  相似文献   

6.
The density and sound velocity of the solutions of ionic liquids based on N-alkyl-N-methyl-morpholinium cations, N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, N-butyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, N-methyl-N-octyl-morpholinium bis(trifluoromethanesulfonyl)imide and N-decyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide in dimethylsulfoxide were measured at T = (298.15 to 318.15) K and at atmospheric pressure. The apparent molar volume and apparent molar compressibility values were evaluated from density and sound velocity values and fitted to the Masson equation from which the partial molar volume and partial molar isentropic compressibility of the ILs at infinite dilution were also calculated at working temperatures. By using the density values, the limiting apparent molar expansibilities were estimated. The effect of the alkyl chain length of the ILs and experimental temperature on these thermodynamic properties is discussed. In addition, molecular dynamics simulations were used to interpret the measured properties in terms of interactions of ILs with solvent molecules. Both, volumetric measurements results and molecular dynamics simulations for ionic liquids in dimethylsulfoxide were compared and discussed with results obtained for the same IL in acetonitrile.  相似文献   

7.
Density, speed of sound and viscosity measurements of binary aqueous solutions of tri-potassium citrate were performed from dilute up to near saturated concentration range at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. Volumetric and transport properties of ternary aqueous solutions of (tri-potassium citrate + KCl) have also been measured within the molality range of KCl (0.05, 0.15, 0.25, 0.35, 0.45, and 0.55) at different temperatures. Apparent molar volume and apparent molar isentropic compressibility have been calculated from the density and speed of sound for binary and ternary aqueous solutions of tri-potassium citrate. Apparent molar volume and apparent molar isentropic compressibility of ternary aqueous solutions of (tri-potassium citrate + KCl) have been correlated with the Redlich–Mayer equation. Viscosity values of ternary aqueous solutions of (tri-potassium citrate + KCl) have been fitted with the Jones–Dole equation. The results obtained have been interpreted in elucidating the effect of tri-potassium citrate on the interaction of KCl–H2O. Density and viscosity values of ternary aqueous solutions of (tri-potassium citrate + KCl) have been predicted successfully using the methods proposed by Laliberte (2007), Laliberte and Cooper (2004) [9], [10] and Zafarani-Moattar and Majdan-Cegincara (2009) [11].  相似文献   

8.
Partition coefficients for a series of dinitrophenylated (DNP) amino acids in biphasic systems composed of hydrophobic ionic liquids and water were experimentally determined. The ionic liquids used were three 1-alkyl-3-methylimidazolium tetrafluoroborates, [Cnmim][BF4], with alkyl chain substituents hexyl, octyl, and decyl. The liquid–liquid phase diagram for the system ([C10mim][BF4] + water) was experimentally determined. DNP amino acids distribute preferentially to the IL-rich phase and ([C10mim][BF4] + water) was found to be the system with the lowest partition coefficients for the solutes studied. The experimental partition coefficients decrease as the size of the alkyl side chain in the ionic liquids increases. The free energy of transfer of a methylene group between phases was calculated through the partition coefficients, which provides a measure of the relative hydrophobicity of the equilibrium phases. It was found that the system ([C10mim][BF4] + water) presents a lower free energy (and thus a lower relative hydrophobicity) than the system ([C8mim][BF4] + water). In order to better understand this result, the micellar behavior of the three ionic liquids was studied. Electrical conductivities of several aqueous solutions of the ionic liquids were measured to determine the critical micelle concentration (CMC) and the degree of micelle ionization, α, of the three ionic liquids. From these two properties it was possible to obtain the free energy of micellization, ΔGmic, for the ionic liquids.  相似文献   

9.
The apparent molar volumes and isentropic compressibility of glycine, l-alanine and l-serine in water and in aqueous solutions of (0.500 and 1.00) mol · kg?1 di-ammonium hydrogen citrate {(NH4)2HCit} and those of (NH4)2HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH4)2HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {glycine + (NH4)2HCit}, {alanine + (NH4)2HCit}, and {serine + (NH4)2HCit} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.  相似文献   

10.
Density, sound velocity, and viscosity of 1-ethyl-3-methylimidazolium bromide, [Emim][Br], in aqueous solutions of tri-potassium phosphate with salt weight fractions (ws = 0.00, 0.10, 0.15, and 0.20) have been measured as a function of concentration of [Emim][Br] at atmospheric pressure and T = (298.15, 303.15, 308.15, 313.15, and 318.15) K. The apparent molar volume, isentropic compressibility, apparent isentropic compressibility, and relative viscosity values have been evaluated from the experimental data. The partial molar volume and isentropic compressibility at infinite dilution, and viscosity B-coefficient obtained from these data have been used to calculate the corresponding transfer parameters for the studied IL from water to the aqueous tri-potassium phosphate solutions. Also, an empirical equation was satisfactorily used to correlate the experimental viscosity data.  相似文献   

11.
Pressure, density, temperature (p, ρ, T) data of 1-butyl-3-methylpyridinium tetrafluoroborate [C4mpyr][BF4] at T = (283.15 to 393.15) K and pressures up to p = 100 MPa are reported with an estimated experimental relative combined standard uncertainty of Δρ/ρ = ±(0.01 to 0.08)% in density. The measurements were carried out with a newly constructed Anton-Paar DMA HPM vibration-tube densimeter. The system was calibrated using double-distilled water, methanol, toluene and aqueous NaCl solutions. An empirical equation of state for fitting of the (p, ρ, T) data of [C4mpyr][BF4] has been developed as a function of pressure and temperature to calculate the thermal properties of the ionic liquid (IL), such as isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, thermal pressure coefficient and internal pressure. Internal pressure and the temperature coefficient of internal pressure data were used to make conclusions on the molecular characteristics of the IL.  相似文献   

12.
The immiscibility windows of aqueous solutions containing the ionic liquid cholinium chloride (N1112OHCl) and the non-ionic surfactants Triton X-100 and Triton X-102 have been determined by the cloud point method at temperatures ranging from T = (298.15 to 333.15) K. The experimental values have been correlated by using two well-known equations. The tie-lines have been ascertained by means of density and refractive indices measurement, and the experimental data have been modeled by the Othmer–Tobias, Bancroft and Setschenow equations. The use of cholinium chloride involves greater demixing capacity than other imidazolium-based ionic liquids.  相似文献   

13.
The apparent specific volumes and isentropic compressibilities have been determined for polyvinylpyrrolidone in aqueous solutions of sodium citrate by density and sound velocity measurements at T = (283.15 to 308.15) K at atmospheric pressure. The results show a positive transfer volume of PVP from an aqueous solution to an aqueous sodium citrate solution. For low concentrations of PVP, the apparent specific volumes of PVP in water increased along with an increase in the polymer mass fraction, while in aqueous sodium citrate solutions decreased along with an increase in the polymer mass fraction. For high concentrations of PVP, the apparent specific volumes of PVP in water and in aqueous sodium citrate solutions were independent of the polymer mass fraction. The apparent specific isentropic compressibility of PVP is negative at T = (283.15 and 288.15) K, which imply that the water molecules around the PVP molecules are less compressible than the water molecules in the bulk solutions. The positive values of apparent specific isentropic compressibility at T = (298.15, 303.15, and 308.15) K imply that the water molecules around the PVP molecules are more compressible than the water molecules in the bulk solutions. Finally, it was found that the apparent specific isentropic compressibility of PVP increases as the concentration of sodium citrate increases.  相似文献   

14.
The experimental data of density (ρ) and sound velocity (u) in the temperature range (275.15 to 293.15) K have been obtained for the systems (dioxane + water), (dimethylformamide + water), (tetrahydrofuran + water), and (acetonitrile + water). The specific heat (Cp) data for the above systems have been obtained at T = 279.15 K. The data obtained are used to calculate the derived parameters of adiabatic compressibility (βS), at T = 275.15 K to T = 283.15 K, isothermal compressibility (βT), and internal pressure (Pi) at T = 279.15 K for different concentrations. The solute properties: apparent molar volume (ϕV), apparent molar expansivity (ϕE), and apparent molar compressibility (ϕKS) have been studied and the limiting values for these properties are reported. The variation in apparent molar properties with concentration and the corresponding temperature and pressure effects are discussed in terms of hydrophobic hydration (–H bonding interaction) and hydrophobic interaction (non-polar group solute–solute association in water). It is noted that the internal pressure of solutions is quite insensitive in the region of solute–solute association, while its variation with concentration in the dilute region is sensitive in contrast to the aqueous alcohol solutions. The molecular interactions also exhibit individualistic behaviour and are much dependent on structural alterations in water structure.  相似文献   

15.
(Liquid + liquid) equilibrium (LLE) data were measured experimentally at T = (298.15 or 303.15) K and atmospheric pressure for the (benzene + cyclohexane + dimethyl sulfone (DMSO)) system. The Othmer–Tobias equation was applied to verify the reliability of the data. Based on the data, the selectivity of DMSO was estimated and compared with that of ionic liquids. The highest selectivity coefficient of DMSO can reach beyond 14, which means it is able to compete with some ionic liquids and it would be a good extractant to separate benzene from cyclohexane. At the same time, the NRTL model was used to correlate the data and the results show that the model agrees on the experimental data very well.  相似文献   

16.
Osmotic coefficients ?, mean activity coefficients γ±, vapor pressure p data, and excess Gibbs free energies GE of aqueous solutions of three ionic liquids 1-propyl-3-methylimidazolium bromide [PMIm]Br, 1-pentyl-3-methylimidazolium bromide [PnMIm]Br, and 1-hexyl-3-methylimidazolium bromide [HMIm]Br were determined by the vapor pressure osmometry method at four temperatures (298.15 K to 328.15 K) in intervals 10 K. From the comparison of osmotic coefficients it follows that aqueous solution of [PMIm]Br shows a more pronounced deviation from Debye–Hückel limiting law (DHLL) and vapor pressure depression more than the other studied ionic liquids which was interpreted in terms of hydrophobic interactions. The Pitzer-ion interaction and MNRTL electrolyte models satisfactorily correlate experimental osmotic coefficient data with good precision. The parameters of the Pitzer-ion interaction model are used to calculate the mean molal activity coefficients and excess Gibbs free energies.  相似文献   

17.
Osmotic coefficients of the binary solutions of two room-temperature ionic liquids (1-butyl-3-methylimidazolium chloride and bromide) in methanol and ethanol have been measured at T = 298.15 K by the isopiestic method. The experimental osmotic coefficient data have been correlated using a forth-order polynomial in terms of (molality)0.5, with both, ion interaction model of Pitzer and electrolyte non-random two liquid (e-NRTL) model of Chen. The values of vapor pressures of above-mentioned solutions have been calculated from the osmotic coefficients. The model parameters fitted to the experimental osmotic coefficients have been used for prediction of the mean ionic activity coefficients of those ionic liquids in methanol and ethanol.  相似文献   

18.
The surface tension (γ) of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]), 1-butyl-3-methylimidazolium bromide ([Bmim][Br]), (N-methyldiethanolamine(MDEA) + [Bmim][BF4]) and (MDEA + [Bmim][Br]) aqueous solutions were measured by using the BZY-1 surface tension meter. The temperature ranged from (293.2 to 323.2) K. The mass fraction of MDEA ranged from 0.35 to 0.45. A thermodynamic equation was proposed to model the surface tension of (MDEA + ionic liquids) (ILS) aqueous solutions and the calculated results agreed well with the experiments. The effects of temperature, mass fractions of MDEA and ILS on the surface tension were demonstrated on the basis of experiments and calculations.  相似文献   

19.
Solubility of CO2 in six hydroxyl ammonium ionic liquids 2-hydroxyethanaminium acetate [hea], bis(2-hydroxyethyl)ammonium acetate [bheaa], 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium acetate [hhemea], 2-hydroxyethanaminium lactate [hel], bis(2-hydroxyethyl)ammonium lactate [bheal], 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium lactate [hhemel] at temperatures (298.15, 313.15, and 328.16) K and pressures ranging from (100 to 1600) kPa was determined. From the experimental solubility data, the Henry’s constant of CO2 for each hydroxyl ammonium ionic liquids was estimated and reported as a function of temperature. Furthermore, enthalpy and entropy of absorption were obtained from estimated Henry’s constant. The results showed that the solubility increase with increasing pressure and decrease with increasing temperature and the solubility of CO2 in these six hydroxyl ammonium ionic liquids was in sequence: [hea] > [bheaa] > [hel] > [bheal] > [hhemel] > [hhemea].  相似文献   

20.
There has been some controversy regarding the uncertainty of measurements of thermal properties using differential scanning calorimeters, namely heat capacity of liquids. A differential scanning calorimeter calibrated in enthalpy and temperature was used to measure the isobaric specific heat capacity of water and aqueous solutions of cesium chloride, in the temperature range 298 K to 370 K, for molalities up 3.2 mol · kg−1, at p = 0.1 MPa, with an estimated uncertainty (ISO definition) better than 1.1%, at a 95% confidence level. The measurements are completely traceable to SI units of energy and temperature.The results obtained were correlated as a function of temperature and molality and compared with other authors, obtained by different methods and permit to conclude that a DSC calibrated by Joule effect is capable of very accurate measurements of the isobaric heat capacity of liquids, traceable to SI units of measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号