首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectroscopic near-field imaging of single silica-shell/Au-core and pure silica nanoparticles deposited on a silicon substrate is performed in the infrared wavelength range (λ = 9–11 μm) using scattering-type scanning near-field optical microscopy (s-SNOM). By tuning the wavelength of the incident light, we have acquired information on the spectral phonon–polariton resonant near-field interactions of the silica-shell/Au-core and pure silica nanoparticles with the probing tip. We made use of the enhanced near-field coupling between the high index Au-core and the probing tip to achieve spectral near-field contrast of the thin silica coating (thickness < 10 nm). Our results show that spectroscopic imaging of thin coating layers and complex core–shell nanoparticles can be directly performed by s-SNOM.  相似文献   

2.
Using both analytical and numerical methods to study transmission of light through dielectric-filled subwavelength apertures in a real metal, we have found that a propagating mode can in principle exist inside a waveguide of arbitrary small size if a particular relationship between the dielectric constants of the cladding and filling materials at the incident frequency is satisfied. Practical transmission through a subwavelength aperture of finite depth can be enhanced when the depth is such that Fabry-Pérot-like resonances are excited. For 810 nm light incident on a silicon-filled 50-nm-diameter aperture in a 200-nm-thick gold film, we found that a normalized near-field intensity ratio of 1.6 at the exit can be achieved. This resonantly enhanced transmission phenomenon may be advantageously applicable to near-field scanning optical microscopy and single-molecule spectroscopy.  相似文献   

3.
Optical properties of Au nanoparticle composites and a grid structure of Cu nanoparticle composite were studied. Negative ion implantation was applied to synthesize Au and Cu nanoparticles in amorphous SiO2 and Al2O3. Au nanoparticles were embedded within a depth of 30 nm by 60keV Au implantation. The surface plasmon resonance (SPR) of Au:SiO2 and Au: Al2O3 composites shifted to red and to blue, respectively, compared to calculated ones by the Mie theory. Optical nonlinearity was measured with pump-probe femtosecond spectroscopy and the transient spectrum of Au: Al2O3 composite presented a large red shift from the SPR peak. Image mapping of far-field transmitted intensity of Cu-implanted SiO2 with a fine grid structure drawn by laser-lithography was observed by a scanning near-field optical microscopy (SNOM) system.  相似文献   

4.
The particle size distribution, morphology and optical properties of the Au nanoparticle (NP) structures for surface enhanced Raman signal (SERS) application are investigated in dependence on their preparation conditions. The structures are produced from relatively thin Au films (10–20 nm) sputtered on fused silica glass substrate and irradiated with several pulses (6 ns) of laser radiation at 266 nm and at fluencies in the range of 160–412 mJ/cm2. The SEM inspection reveals nearly homogeneously distributed, spherical gold particles. Their initial size distribution of the range of 20–60 nm broadens towards larger particle diameters with prolonged irradiation. This is accompanied by an increase in the uncovered surface of the glass substrate and no particle removal is observed. In the absorption profiles of the nanostructures, the broad peak centred at 546 nm is ascribed to resonant absorption of surface plasmons (SPR). The peak position, halfwidth and intensity depend on the shape, size and size distribution of the nanostructured particles in agreement with literature. From peak intensities of the Raman spectra recorded for Rhodamine 6G in the range of 300–1800 cm−1, the relative signal enhancement by factor between 20 and 603 for individual peaks is estimated. The results confirm that the obtained structures can be applied for SERS measurements and sensing.  相似文献   

5.
The influence of “hot spots” on the near-field properties of Au nanoshell and Au nanoshell dimers have been investigated by means of the finite element method. It is found with increasing the pinhole radius R that the maximal enhancement of near-field for Au nanoshell with pinhole parallel to the polarization increases from 17.906 at R=0 nm to 36.979 at R=0.8 nm, and then almost shows a negligible radius dependence. Large electric fields also can be observed inside the pinhole perpendicular to the polarization, which increases with increasing the pinhole radius. The near-field of Au nanoshell dimer depends strongly on the polarization and propagation directions of the incident light. Exponential decay behavior is found for the maximal enhancement of the electric field in the dimer junction as a function of the dimer separation. Furthermore, a very strong electric field is found in the junction between two Au nanoshells when the pinholes are located near the gap between the nanoshells.  相似文献   

6.
A theory of anisotropic optical local-field effects caused by resonantly polarizable small particles in multilayer polarizable media is developed. Considered is the model of a rectangular lattice of ellipsoidal nanoparticles with taking account of “image forces” at an interface in a layered medium. The lattice sums for anisotropic dipolar interactions are found using the Green’s function method in the quasi-point dipole approximation, and the effective polarizabilities of particles in a layer located near an interface are calculated self-consistently. The manifestation of an anisotropic local field of nanoparticles in optical radiation and propagation of evanescent waves responsible for optical near-field effects is investigated. Applications of the obtained results in the polar magneto-optical Kerr effect and reflectance anisotropy spectroscopy in propagating the polarized light along the normal to layers are considered. The resonant features in the spectra due to enhancement of the optical effects under excitation of surface (local) plasmons in nanoparticles of a noble metal are studied.  相似文献   

7.
It is demonstrated that polymer nanocylinders can form spiral light structures. Spiral distributions of light intensity are observed at distances of 230–1100 nm above the nanocylinder with a diameter of 700 nm and a height of 1100 nm. The optical spirals are measured using a scanning near-field optical microscope that performs 3D scanning over planes when the nanocylinder is illuminated from the bottom with linearly polarized CW He-Ne-laser radiation at a wavelength of 632.8 nm. It is shown that the topology of the optical spirals significantly depends on the incident polarization.  相似文献   

8.
Upconversion of low-level ir radiation at 3.39 μm to the near ultraviolet at 330.5 nm has been obtained using the resonantly enhanced third-order nonlinearity of Na atoms. This enhancement has been achieved by two-photon resonant pumping of the nonallowed Na 3s–5s transition with a dye-laser radiation at 602.4 nm. Self-phase-matching has been observed.  相似文献   

9.
We propose a novel method to increase the resolution of imprint lithography by introducing strong localization of the optical near-field intensity, depending on the mold structure. By optimizing the thickness of the metallic film on a SiO2 line-and-space (LS) mold without a sidewall coating, we confirmed that the optical near-field strongly localizes at the edge of the mold, using a finite-difference time-domain calculation method. Based on the calculated results, we performed optical near-field imprint lithography using a mold with metallized (20-nm-thick Al without a sidewall coating) SiO2 LS with a 300-nm half-pitch that was 200-nm deep with illumination using the g-line (λ=436 nm), and obtained features as narrow as 50 nm wide. PACS 81.16.Nd; 81.16.Rf  相似文献   

10.
We present near-field distributions around an isolated 800-nm silica or silicon nanoparticle, and nanoparticle arrays of 800-nm silica or silicon nanoparticles, on a silicon substrate by the finite-difference time-domain method when 800-nm light is irradiated obliquely to the substrate. Nanopatterning mediated with the nanoparticle system is promising for large-area, high-throughput patterning by using an enhanced localized near-field ablation by the nanoscattered light lens effect. The irradiation area cannot be extended for silica nanoparticles, because the optical field enhancement factor is low. Gold nanoparticles can generate highly enhanced near fields, although at present there are no useful ways to arrange the gold nanoparticles on the substrate at a high throughput. Silicon nanoparticles with high dielectric permittivity have optical characteristics of both silica and gold nanoparticles. The particle arrangement on the Si substrate is technically easy using a wet pulling process. From the calculation, high optical field intensity is acquired with oblique s-polarized irradiation to the substrate under silicon nanoparticle arrays, and the intensity is almost the same as that under gold nanoparticle arrays under the same condition. With this method, high-throughput nanopatterning for a large area would be achievable.  相似文献   

11.
In terms of Green’s functions, a theory is developed describing the resonant magnetooptical Kerr effect in light scattering by a linear probe that is parallel to the surface of a magnet and placed at a subwavelength distance from it. The probe is supposed to be a metal nanowire supporting long-lived surface plasmons and forming the near field of the “probe + image” complex. The resonant interaction between the probe and the sample is taken into account within a self-consistent approximation of multiple-scattering theory, and the magnetooptical interaction is included in the linear approximation in magnetization. The problem of scanning near-field magnetooptical microscopy with a linear probe is solved analytically in the case where the magnetization is parallel to both the magnet surface and the plane of incidence of light (longitudinal magnetooptical Kerr effect). The polarization, spectral, and angular characteristics of scattered light modulated by magnetization are discussed. It is shown that the magnetooptical modulation of the scattered light intensity is significantly enhanced when surface plasmons are resonantly excited in the nanowire.  相似文献   

12.
We present an analytical model of the resonantly enhanced transmission of light through a subwavelength nm-size slit in a thick metal film. The simple formulae for the transmitted electromagnetic fields and the transmission coefficient are derived by using the narrow-slit approximation and the Green’s function formalism for the solution of Maxwell’s equations. The resonance wavelengths are in agreement with the semi-analytical model [Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001)], which solves the wave equations by using the Rayleigh field expansion. Our formulae, however, show great resonant enhancement of a transmitted wave, while the Rayleigh expansion model predicts attenuation. The difference is attributed to the near-field subwavelength diffraction, which is not considered by the Rayleigh-like expansion models. PACS 42.25.Bs; 42.65.Fx; 42.79.Ag; 42.79.Dj  相似文献   

13.
The resonance Raman scattering of light in MBE-grown structures with ZnSe nanowires (10–20 nm in diameter) with an Au film deposited on the substrate used as a catalyst was investigated. The thicknesses of the Au layers were 2, 10, and 100 Å. The photon energy of the He-Cd pump laser (λ = 441.6 nm) was in excess of the band gap of bulk ZnSe, and the measurements were conducted at room temperature. Under these conditions, the Raman spectra are defined by a cascade process in which the electron interacting with a longitudinal optical phonon transfers between real band states with a certain probability of radiative recombination at each step. The blue shift of the luminescence maximum associated with the quantum confinement of carriers in the nanowire has been observed. The average nanowire diameter derived from the magnitude of this shift agrees well with electron microscopy measurements.  相似文献   

14.
Hansen P  Hesselink L  Leen B 《Optics letters》2007,32(12):1737-1739
We present a design for a subwavelength C-shaped optical waveguide with a 90 degrees junction that efficiently transports light while maintaining tight confinement with an exit spot size of lambda/7. Finite-difference time-domain simulations of perfect electric conductors and Au C-aperture waveguides are performed for optical frequencies. A design resonant near 780 nm is presented, with a spot size of 107 nm x 107 nm and an energy density enhancement factor of 10 for a bent waveguide of total length 1.4 microm.  相似文献   

15.
主要从实验和理论两个方面,探讨了不同Au颗粒尺寸和不同基质对Au:TiO2和Au:Al2O3复合膜线性和非线性光学性质的影响.用吸收光谱研究了Au颗粒尺寸和基质与Au复合膜表面等离子体共振带之间的关系;用皮秒Z扫描技术研究了共振和非共振情况下(激发光波长分别为532nm和1064nm),Au颗粒尺寸和基质与复合膜三阶非线性极化率的关系.基于表面等离子体共振理论和局域场增强理论对复合膜进行了分析,得到了不同Au颗粒大小和不同基质时Au复合膜的 关键词: 金属纳米颗粒 复合膜 三阶非线性 表面等离子体共振  相似文献   

16.
The triangular-shaped Au/ZnO nanoparticle arrays were fabricated on fused quartz substrate using nanosphere lithography. The structural characterization of the Au/ZnO nanoparticle arrays was investigated by atomic force microscopy. The absorption peak due to the surface plasmon resonance of Au particles at the wavelength of about 570 nm was observed. The nonlinear optical properties of the nanoparticle arrays were measured using the z-scan method at a wavelength of 532 nm with pulse duration of 10 ns. The real and imaginary part of third-order nonlinear optical susceptibility, Re χ(3) and Im χ(3), were determined to be 1.15 × 10−6 and −5.36 × 10−7 esu, respectively. The results show that the Au/ZnO nanoparticle arrays have great potential for future optical devices.  相似文献   

17.
Qi Lin 《Optik》2011,122(12):1031-1036
We study the optical properties of dimer and septamer aggregates (in forms of being separated or merged) of ultra-small silver nanoparticles (a few nanometers in diameter) by calculating their extinction spectra and optical field distributions using the discrete dipole approximation method. Characteristics of their extinction spectra are identified due to different resonance modes dependent on the incidence states of light. Specifically, as polarization of the incidence light is perpendicular to the center-to-center lines of the nanoparticles, interaction of neighboring nanoparticles is in the “repulsive coupling mode”, which results in blue-shift of the resonance peak with decrease of the nanoparticle interspacing. While, whenever there is a projection of the polarization of incident light on the center-to-center lines of the nanoparticles, the “attractive coupling mode” between the nanoparticles dominates in their resonant interaction, which results in red-shift of the resonance peak with decrease of the nanoparticle interspacing. It is also shown that optical interaction of the ultra-small nanoparticles is only effective when their interspacings are approximately less than 15 nm, and particularly prominent when Coulomb interactions of the electronic charges of plasmons are active within a few nanometers.  相似文献   

18.
Surface‐enhanced Raman scattering studies were performed using nonresonant (514.5 nm) and resonant (676.4 nm) optical excitations on single‐walled carbon nanotubes thoroughly separated into semiconducting (pure 99%) and metallic (pure 98%) components. Regardless of the support (Au or Ag), the metallic nanotubes do not present an anomalous anti‐Stokes Raman emission. Regardless of whether an on‐resonant or off‐resonant optical excitation is used, only the semiconducting nanotubes produce an abnormal anti‐Stokes Raman emission that grows when increasing the excitation light intensity or temperature. The Raman studies under light polarized relative to the main nanotube axis demonstrate that only semiconducting nanotubes are sensitive toward changes in the polarization of the excitation light. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The optical properties of a colloid consisting of nanoparticles are investigated on the example of interaction of three dielectric particles consisting of nonresonant atoms (whose natural transition frequencies are far from the radiation frequency) with interstitial barium atoms in the field of external optical radiation. On the basis of integrodifferential equations, expressions for the electric and magnetic fields in the wave zone are derived. The influence of distant neighbors in the ensemble on the light-scattering properties of a nanoparticle is considered, and the condition of applicability of the frequently used two-particle approximation is obtained. The spectrum of the system is investigated, and an additional resonant peak at the natural frequency of the isolated particle caused by the distant neighbor is established. Under some specific conditions, the additional peak intensity may exceed the main peak intensity of the optical near-field resonance in the two-particle system. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 3–11, August, 2006.  相似文献   

20.
Nanostructures on metal film surfaces have been written directly using a pulsed ultraviolet laser. The optical near-field effects of the laser were investigated. Spherical silica particles (500–1000 nm in diameter) were placed on metal films. After laser illumination with a single laser shot, nanoholes were obtained at the original position of the particles. The mechanism for the formation of the nanostructure patterns was investigated and found to be the near-field optical resonance effect induced by the particles on the surface. The size of the nanohole was studied as a function of laser fluence and silica particle size. The experimental results show a good agreement with those of the relevant theoretical calculations of the near-field light intensity distribution. The method of particle-enhanced laser irradiation allows the study of field enhancement effects as well as its potentialapplications for nanolithography. Received: 10 December 2002 / Accepted: 20 January 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +65-777/1349, E-mail: HUANG_Sumei@dsi.a-star.edu.sg  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号