首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This paper contains new estimates for the distance between adjacent zeros of solutions of the first order delay differential equation
x(t)+p(t)x(tτ)=0  相似文献   

2.
As p-Laplacian equations have been widely applied in the field of fluid mechanics and nonlinear elastic mechanics, it is necessary to investigate the periodic solutions of functional differential equations involving the scalar p-Laplacian. By using Lu’s continuation theorem, which is an extension of Manásevich-Mawhin, we study the existence of periodic solutions for a Rayleigh type p-Laplacian equation
(φp(x(t)))+f(x(t))+g1(x(t-τ1(t,|x|)))+β(t)g2(x(t-τ2(t,|x|)))=e(t).  相似文献   

3.
In this paper, a higher order p-Laplacian neutral functional differential equation with a deviating argument:
[φp([x(t)−c(t)x(tσ)](n))](m)+f(x(t))x(t)+g(t,x(tτ(t)))=e(t)  相似文献   

4.
We construct stable invariant manifolds for semiflows generated by the nonlinear impulsive differential equation with parameters x'= A(t)x + f(t, x, λ), t≠τi and x(τ+i) = Bix(τi) + gi(x(τi), λ), i ∈ N in Banach spaces, assuming that the linear impulsive differential equation x'= A(t)x, t≠τi and x(τ+i) = Bix(τi), i ∈ N admits a nonuniform (μ, ν)-dichotomy. It is shown that the stable invariant manifolds are Lipschitz continuous in the parameter λ and the initial values provided that the nonlinear perturbations f, g are sufficiently small Lipschitz perturbations.  相似文献   

5.
We consider the asymptotic behavior of solutions of a linear differential system x=A(t)x, where A is continuous on an interval ([a,). We are interested in the situation where the system may not have a desirable asymptotic property such as stability, strict stability, uniform stability, or linear asymptotic equilibrium, but its solutions can be written as x=Pu, where P is continuously differentiable on [a,) and u is a solution of a system u=B(t)u that has the property in question. In this case we say that P preconditions the given system for the property in question.  相似文献   

6.
Using spectral theory we obtain sufficient conditions for the almost automorphy of bounded solutions to differential equations with piecewise constant argument of the form x(t)=A(t)x([t])+f(t),tR, where A(t) is an almost automorphy operator, f(t) is an X-valued almost automorphic function and X is a finite dimensional Banach space.  相似文献   

7.
In this paper we study the existence and non-existence of travelling wave to parabolic system of the form at=axxaf(b), bt=Dbxx+af(b), with f a degenerate nonlinearity. In the context of an auto-catalytic chemical reaction, a is the density of a chemical species called reactant A, b that of another chemical species B called auto-catalyst, and D=DB/DA>0 is the ratio of diffusion coefficients, DB of B and DA of A, respectively. Such a system also arises from isothermal combustion. The nonlinearity is called degenerate, since f(0)=f(0)=0. One case of interest in this article is the propagating wave fronts in an isothermal auto-catalytic chemical reaction of order with 1<n<2, and D≠1 due to different molecular weights and/or sizes of A and B. The resulting nonlinearity is f(b)=bn. Explicit bounds v and v that depend on D are derived such that there is a unique travelling wave of every speed v?v and there does not exist any travelling wave of speed v<v. New to the literature, it is shown that vvD when D<1. Furthermore, when D>1, it is shown rigorously that there exists a vmin such that there is a travelling wave of speed v if and only if v?vmin. Estimates on vmin improve significantly that of early works. Another case in which two different orders of isothermal auto-catalytic chemical reactions are involved is also studied with interesting new results proved.  相似文献   

8.
The existence of solutions in a weak sense of x′ + (A + B(t, x))x = f(t, x), x(0) = x(T) is established under the conditions that A generates a semigroup of compact type on a Hilbert space H; B(t,x) is a bounded linear operator and f(t, x) a function with values in H; for each square integrable ?(t) the problem with B(t, ?(t)) and f(t, ?(t)) in place of B(t, x) and f(t, x) has a unique solution; and B and f satisfy certain boundedness and continuity conditions.  相似文献   

9.
The solvability of the abstract implicit nonlinear nonautonomous differential equation (A(t)u(t))+B(t)u(t)+C(t)u(t)∋f(t) will be investigated in the case of a measure as an initial value. It will be shown that this problem has a solution if the inner product of A(t)x and B(t)x+C(t)x is bounded below.  相似文献   

10.
In this note, we present a Massera type theorem for the existence of almost automorphic solutions of periodic linear evolution equations of the form x(t)=A(t)x(t)+f(t), where A(t) is unbounded linear operator depending on t periodically and generates a τ-periodic evolutionary process, f is almost automorphic. The main results are stated in terms of the almost automorphy of solutions and their Carleman spectra.  相似文献   

11.
In this paper, we proved that the odd order nonlinear neutral delay differential equation
[x(t)−p(t)g(x(tτ))](n)+q(t)h(x(tσ))=0  相似文献   

12.
In this paper, applying the theory of semigroups of operators to evolution families and Banach fixed point theorem, we prove the existence and uniqueness of the weighted pseudo almost periodic mild solution of the semilinear evolution equation x(t)=A(t)x(t)+f(t,x(t)) with nonlocal conditions x(0)=x0+g(x) in Banach space X under some suitable hypotheses.  相似文献   

13.
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the first order neutral functional differential equation of the form
(x(t)+Bx(tδ))=g1(t,x(t))+g2(t,x(tτ))+p(t).  相似文献   

14.
The paper discusses the existence of positive and dead core solutions of the singular differential equation (?(u))=λf(t,u,u,u) satisfying the boundary conditions u(0)=A, u(T)=A, min{u(t):t∈[0,T]}=0. Here λ is a nonnegative parameter, A is a positive constant and the Carathéodory function f(t,x,y,z) is singular at the value 0 of its space variable y.  相似文献   

15.
The unstable properties of the null solution of the nonautonomous delay system x′(t)=A(t)x(t)+B(t)x(tr1(t))+f(t,x(t),x(tr2(t))) are examined; the nonconstant delays r1, r2 are assumed to be continuous bounded functions. The case A=constant is reviewed, where a theorem, recalling the Perron instability theorem for ordinary differential equations, is obtained.  相似文献   

16.
We give Lyapunov exponents of solutions to linear differential equations of the form x=Ax+f(t), where A is a complex matrix and f(t) is a τ-periodic continuous function. Notice that f(t) is not “small” as t→∞. The proof is essentially based on a representation [J. Kato, T. Naito, J.S. Shin, A characterization of solutions in linear differential equations with periodic forcing functions, J. Difference Equ. Appl. 11 (2005) 1-19] of solutions to the above equation.  相似文献   

17.
We prove that the operator G, the closure of the first-order differential operator −d/dt+D(t) on L2(R,X), is Fredholm if and only if the not well-posed equation u(t)=D(t)u(t), tR, has exponential dichotomies on R+ and R and the ranges of the dichotomy projections form a Fredholm pair; moreover, the index of this pair is equal to the Fredholm index of G. Here X is a Hilbert space, D(t)=A+B(t), A is the generator of a bi-semigroup, B(⋅) is a bounded piecewise strongly continuous operator-valued function. Also, we prove some perturbations results and consider various examples of not well-posed problems.  相似文献   

18.
Sufficient conditions are given for asymptotic stability of the linear differential system x′  =  B(t)x with B(t) being a 2  ×  2 matrix. All components of B(t) are not assumed to be positive. The matrix B(t) is naturally divisible into a diagonal matrix D(t) and an anti-diagonal matrix A(t). Our concern is to clarify a positive effect of the anti-diagonal part A(t)x on the asymptotic stability for the system x′  =  B(t)x.   相似文献   

19.
Sufficient conditions are given for asymptotic stability of the linear differential system x′  =  B(t)x with B(t) being a 2  ×  2 matrix. All components of B(t) are not assumed to be positive. The matrix B(t) is naturally divisible into a diagonal matrix D(t) and an anti-diagonal matrix A(t). Our concern is to clarify a positive effect of the anti-diagonal part A(t)x on the asymptotic stability for the system x′  =  B(t)x.  相似文献   

20.
Given an n×n real matrix A with nonnegative off-diagonal entries, the solution to , x0=x(0), t?0 is x(t)=etAx0. The problem of identifying the initial points x0 for which x(t) becomes and remains entrywise nonnegative is considered. It is known that such x0 are exactly those vectors for which the iterates x(k)=(I+hA)kx0 become and remain nonnegative, where h is a positive, not necessarily small parameter that depends on the diagonal entries of A. In this paper, this characterization of initial points is extended to a numerical test when A is irreducible: if x(k) becomes and remains positive, then so does x(t); if x(t) fails to become and remain positive, then either x(k) becomes and remains negative or it always has a negative and a positive entry. Due to round-off errors, the latter case manifests itself numerically by x(k) converging with a relatively small convergence ratio to a positive or a negative vector. An algorithm implementing this test is provided, along with its numerical analysis and examples. The reducible case is also discussed and a similar test is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号