首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Two luminescent, monoanionic chalcogenide-centered nonanuclear silver clusters stabilized by dichalcogenophosphates were synthesized and fully characterized by various spectroscopies including multinuclear NMR and ESI-mass. Single crystal X-ray diffraction studies on both cluster anions, [Ag9(S){S2P(OEt)2}8]?, 1, and [Ag9(Se){Se2P(OEt)2}8]?, 2, reveal that the nine silver atoms form an extremely distorted tricapped trigonal prism, which has an encapsulating chalcogenide. The coordination geometry of the central chalcogenide appears to be monocapped trigonal prismatic, which was analyzed by DFT calculations. The origin of the yellow emission is assigned by TDDFT calculations to originate from a chalcogen (ligand + encapsulated) → silver charge transfer.  相似文献   

2.
The betain‐like carbodiphosphorane CS2 adduct S2CC(PPh3)2 ( 1 ) reacts with Ag(I) salts which contain weakly coordinating anions such as [BF4]? or [Al{OC(CF3)3}4]? to produce the cluster compounds [Ag6{S2CC(PPh3)2}4][BF4]6 ( 2 ) and [Ag4{S2CC(PPh3)2}4][Al{OC(CF3)3}4]4 ( 3 ), respectively, as orange yellow crystals containing solvent molecules. In the solid state the Ag4 unit in 3 forms a tetrahedron, and in the Ag6 core of 2 two of the opposite edges of the tetrahedron are bridged by Ag+ ions. The clusters are held together by argentophilic interactions, and each sulfur atom of 1 is coordinated to four (as in 2 ) or three (as in 3 ) silver atoms. The compounds are characterized by IR and 31P NMR spectroscopic studies and by X‐ray diffraction analyses.  相似文献   

3.
The first atomically and structurally precise silver‐nanoclusters stabilized by Se‐donor ligands, [Ag20{Se2P(OiPr)2}12] ( 3 ) and [Ag21{Se2P(OEt)2}12]+( 4 ), were isolated by ligand replacement reaction of [Ag20{S2P(Oi Pr)2}12] ( 1 ) and [Ag21{S2P(Oi Pr)2}12]+ ( 2 ), respectively. Furthermore, doping reactions of 4 with Au(PPh3)Cl resulted in the formation of [AuAg20{Se2P(OEt)2}12]+ ( 5 ). Structures of 3 , 4 , and 5 were determined by single‐crystal X‐ray diffraction. The anatomy of cluster 3 with an Ag20 core having C 3 symmetry is very similar to that of its dithiophosphate analogue 1 . Clusters 4 and 5 exhibit an Ag21 and Au@Ag20 core of Oh symmetry composed of eight silver capping atoms in a cubic arrangement and encapsulating an Ag13 and Au@Ag12 centered icosahedron, respectively. Both ligand exchange and heteroatom doping result in significant changes in optical and emissive properties for chalcogen‐passivated silver nanoparticles, which have been theoretically confirmed as 8‐electron superatoms.  相似文献   

4.
A general class of C3‐symmetric Ag9 clusters, [Ag9S(tBuC6H4S)6(dpph)3(CF3SO3)] ( 1 ), [Ag9(tBuC6H4S)6(dpph)3(CF3SO3)2] ? CF3SO3 ( 2 ), [Ag9(tBuC6H4S)6(dpph)3(NO3)2] ? NO3 ( 3 ), and [Ag9(tBuC6H4S)7(dpph)3(Mo2O7)0.5]2 ? 2 CF3COO ( 4 ) (dpph=1,6‐bis(diphenylphosphino)hexane), with a twisted trigonal‐prism geometry was isolated by the reaction of polymeric {(HNEt3)2[Ag10(tBuC6H4S)12]}n, 1,6‐bis(diphenylphosphino)hexane, and various silver salts under solvothermal conditions. The structures consist of discrete clusters constructed from a girdling Ag9 twisted trigonal prism with the top and bottom trigonal faces capped by diverse anions (i.e., S2? and CF3SO3? for compound 1 , 2×CF3SO3? for compound 2 , 2×NO3? for compound 3 , and tBuC6H4S? and Mo2O72? for compound 4 ). This trigonal prism is bisected by another shrunken Ag3 trigon at its waist position. Interestingly, two inversion‐related Ag9 trigonal‐prismatic clusters are dimerized by the Mo2O72? ion in compound 4 . The twist is amplified by the bulkier thiolate, which also introduces high steric‐hindrance for the capping ligand, that is, the longer dpph ligand. Four more silver–sulfur clusters (namely, compounds 5 – 8 ) with their nuclearity ranging from 6–10 were solely characterized by single‐crystal X‐ray diffraction to verify the above‐described synergetic effect of mixed ligands in the construction of Ag9 twisted trigonal prisms. Surprisingly, only cluster 1 emits yellow luminescence at λ=584 nm at room temperature, which may be attributed to a charge transfer from the S 3p orbital to the Ag 5s orbital, or mixed with metal‐centered (MC) d10→d9s1 transitions. Upon cooling from 300 to 80 K, the emission intensity was enhanced along with a hypsochromic shift. The good linear relationship between the maximum emission intensity and the temperature for compound 1 in the range of 180–300 K indicates that this is a promising molecular luminescent thermometer. Furthermore, cyclic voltammetric studies indicated that the diffusion‐ and surface‐controlled redox processes were determined for compounds 1 and 3 as well as compound 4 , respectively.  相似文献   

5.
Ethylene complexes [OsH(η2‐CH2=CH2)L4]Y ( 1 , 2 ) [L = PPh(OEt)2, P(OEt)3; Y = OTf, BPh4] were prepared by reacting the dihydride OsH2L4 first with methyl triflate CH3OTf and then with ethylene (1 atm). Alternatively, the compound [OsH(η2‐CH2=CH2){PPh(OEt)2}4]OTf was prepared by allowing the dinitrogen derivative [OsH(N2){PPh(OEt)2}4]OTf to react with ethylene. Acrylonitrile CH2=C(H)CN reacts with OsH(OTf)L4 [L = P(OEt)3] to give the complex [OsH{κ1‐NCC(H)=CH2}{P(OEt)3}4]BPh4 ( 3 ). The complexes were characterized spectroscopically (IR and 1H, 13C, 31P NMR) and by X‐ray crystal structure determination of the [OsH(η2‐CH2=CH2){PPh(OEt)2}4]BPh4 derivative.  相似文献   

6.
Assembly of small clusters into rigid bodies with precise shape and symmetry has been witnessed by the significant advances in cluster‐based metal–organic frameworks (MOFs), however, nanosized silver cluster based MOFs remain largely unexplored. Herein, two anion‐templated silver clusters, CO3@Ag20 and SO4@Ag22, were ingeniously incorporated into a 2D sql lattice ( 1 , [CO3@Ag20(iPrS)10(NO3)8(DMF)2]n) and an unprecedented 3D two‐fold interpenetrated dia network ( 2 , [SO4@Ag22(iPrS)12(NO3)6 ? 2 NO3]n), respectively, under mild solvothermal conditions. Their atomically precise structures were confirmed by single‐crystal X‐ray diffraction analysis and further consolidated by IR spectroscopy, thermogravimetric analysis (TGA), and elemental analysis. Each drum‐like CO3@Ag20 cluster is extended by twelve NO3? ions to form the 2D sql lattice of 1 , whereas each ball‐shaped SO4@Ag22 cluster with a twisted truncated tetrahedral geometry is pillared by four [Ag6(NO3)3] triangular prisms to form the 3D interpenetrated dia network of 2 . Notably, 2 is the first interpenetrated 3D MOF constructed from silver clusters. These results demonstrate the dual role of the anions, which not only internally act as anion templates to induce the formation of silver thiolate clusters but also externally extend the cluster units into the rigid networks. The photoluminescent and electrochemical properties of 2 are discussed in detail.  相似文献   

7.
Abstract

Several copper and silver clusters containing diselenophosphate ligands such as tetranuclear [Cu{Se2P(OR)2}]4, hexanuclear [Ag{Se2P(OR)2}]6, octanuclear [Cu88-Se)}Se2P(OR)2}6], [Ag88-Se)}Se2P(OR)2}6], [Cu88-X)}Se2P(OR)2}6](PF6), [Ag88-X)}Se2P(OR)2}6](PF6), decanuclear [Ag1010-Se)}Se2P(OR)2}8], undecanuclear [Cu119-Se)(μ3-X)3}Se2P(OR)2}6], [Ag119-Se)(μ3-X)3}Se2P(OR)2}6], and dodecanuclear [Cu12(P2Se6)}Se2P(OR)2}8] have been isolated. All these clusters were well characterized in the solid-state and solution phase by elemental analysis, positive FAB mass spectrometry, multinuclear NMR (1H, 31P, and 77Se), and single crystal X-ray diffraction. In addition, tetranuclear zinc clusters [Zn44-Se){Se2P(OPr)2}6], and [Zn44-O){Se2P(OR)2}6] (R = Et, iPr) also are synthesized and characterized. Solution studies of both [M{Se2P(OEt)2}2]∞ and [M2{Se2P(OiPr)2}4] (M = Zn, Cd) which display a monomer-dimer equilibrium in solution were performed by VT 31P NMR in CD2Cl2.  相似文献   

8.
《中国化学快报》2023,34(8):108044
Chiral high-nuclearity lanthanide (4f) clusters have shown fantastic properties in various fields. However, their synthesis is still of great challenge. Herein, we report two pairs of enantiomers of high-nuclearity Dy-oxo clusters synthesized through in situ strategy. They are [Dy18(R/SHftp)4 (R/SH2btp)4(μ2-OH)8(μ3-OH)20(μ6-O)(NO3)4(μ-H2O)8]·[solvents] (1R and 1S) and [Dy9(R/SHftp)2 (R/SH2btp)2(OAc)6(μ3-OH)10(H2O)6](OAc)·[solvents] (2R and 2S), where R/SHftp2− and R/SH2btp3− represent in situ formed 2-formyl-6-[N-(threonine)iminomethyl]-4-methylphenol and 2,6-bis[N-(threonine)iminomethyl]-4-methylphenol anions, respectively. These in situ formed clusters were endowed with not only homochirality via introducing R/SHftp2− and R/SH2btp3− ligands, but also rich oxo-bridges by controlling the hydrolysis of DyIII ions. Different anions from DyIII salts further induced structural variation between two sets of clusters. 1R and 1S feature an unprecedent four-blade propeller shaped {Dy18} core, whose centered octahedral {Dy6} unit are surrounded by four triangular {Dy3} units. Strikingly, they represent the second largest chiral 4f cluster species so far. 2R and 2S display a sandglass-like {Dy9} skeleton that consist of two square pyramid {Dy5} units sharing a DyIII vertex. Magnetic investigation revealed possible antiferromagnetic interactions between the DyIII centers in these clusters.  相似文献   

9.
The reaction of hexachlorophosphazene, P3N3Cl6, with SO3 and the gold halides AuCl3 and AuBr3, respectively, leads to the new cyclic anionic tetramer, [S4N2O10]2−, which is coordinated to Au3+ in the dimeric complexes [Au2X2(S4N2O10)2] (X=Cl, Br). The [S4N2O10]2− anion can be seen as the condensation product of two sulfate anions, [SO4]2−, and two amidosulfate anions, [NH2SO3].  相似文献   

10.
A decanuclear silver chalcogenide cluster, [Ag10(Se){Se2P(OiPr)2}8] (2) was isolated from a hydride-encapsulated silver diisopropyl diselenophosphates, [Ag7(H){Se2P(OiPr)2}6], under thermal condition. The time-dependent NMR spectroscopy showed that 2 was generated at the first three hours and the hydrido silver cluster was completely consumed after thirty-six hours. This method illustrated as cluster-to-cluster transformations can be applied to prepare selenide-centered decanuclear bimetallic clusters, [CuxAg10-x(Se){Se2P(OiPr)2}8] (x = 0–7, 3), via heating [CuxAg7−x(H){Se2P(OiPr)2}6] (x = 1–6) at 60 °C. Compositions of 3 were accurately confirmed by the ESI mass spectrometry. While the crystal 2 revealed two un-identical [Ag10(Se){Se2P(OiPr)2}8] structures in the asymmetric unit, a co-crystal of [Cu3Ag7(Se){Se2P(OiPr)2}8]0.6[Cu4Ag6(Se){Se2P(OiPr)2}8]0.4 ([3a]0.6[3b]0.4) was eventually characterized by single-crystal X-ray diffraction. Even though compositions of 2, [3a]0.6[3b]0.4 and the previous published [Ag10(Se){Se2P(OEt)2}8] (1) are quite similar (10 metals, 1 Se2−, 8 ligands), their metal core arrangements are completely different. These results show that different synthetic methods by using different starting reagents can affect the structure of the resulting products, leading to polymorphism.  相似文献   

11.
Four silver thiolate clusters, [H3O][(Ag3S3)(BF4)@Ag27(tBuS)18(hfac)6H2O] ⋅ H2O ( 1 ; hfac = hexafluoroacetylacetone), [(Ag3S3)(CF3CO2)@Ag30(tBuS)16(CF3CO2)9(CH3CN)4] ⋅ CF3CO2 ⋅ 4 CH3CN ( 2 ), [(Ag3S3)(MoO4)@Ag30(tBuS)16(CF3CO2)9(CH3CN)4] ⋅ 2 CH3CN ( 3 ), and [(Ag3S3)(CrO4)@Ag30(tBuS)16(CF3CO2)9(CH3CN)4] ⋅ 4 CH3CN ( 4 ), were isolated. They have similar nestlike structures assembled by an [Ag3S3]3− template together with one of the BF4, CF3CO2, MoO42−, or CrO42− anions. Interestingly, the solid-state emissions of 2 – 4 are dependent on the templating anions and are tunable from green to orange and then to red by changing the template from CF3CO2 to MoO42− and to CrO42−, and this may be correlated to the charge transfer between these templates to metal atoms. This work helps to understand the templating role of heteroanions and the relationship between structure and properties.  相似文献   

12.
The effect of the length of alkane spacer in diphosphines on the nuclearity of Ag(I) complexes containing dialkyl dithiophosphates (dtp) ligands has been investigated. 1,1-Bis(diphenylphosphino)methane (dppm) yielded tetranuclear [Ag4(dppm)2{S2P(OEt)2}4] (1), [Ag4(dppm)2{S2P(OiPr)2}4] (3), trinuclear [Ag3(dppm)3{S2P(OEt)2}2](PF6) (2), and a dinuclear [Ag2(dppm)2{S2P(OiPr)}](PF6) (4). The increase in spacer length from one methylene in dppm to two in 1,2-bis(diphenylphosphino)ethane (dppe) resulted in the formation of polymeric, [Ag(dppe){S2P(OR)2}] (R = Et, 5a and 5a′; iPr, 5b), and [Ag43-Cl)(dppe)1.5{S2P(OR)2}3] (R = Et, 6a; iPr, 6b). Compounds 5a, 5b, 6a and 6b were reported earlier [C.W. Liu, B.-J. Liaw, L.-S. Liou, J.-C. Wang, Chem. Commun. (2005) 1983]. Further increase in the chain length to four methylene units in 1,4-bis(diphenylphosphino)butane (dppb) yielded dppb-bridged polymers, [Ag(dppb){S2P(OEt)2}] (7) and [Ag2(dppb){S2P(OEt)2}2] (8). In all the polynuclear compounds, diphosphines acted as P,P′-bridging ligands, while the dtp ligands (S,S′-donors) adopted varieties of coordination patterns: S,S′-chelating (5, 7), S,S′-bridging (4), bimetallic-triconnective, μ221 (1, 3, 8), bimetallic-diconnective, μ22 (2, 3) and trimetallic-triconnective, μ321 (6). Some of the complexes exhibit argentophilicity with Ag?Ag distances in the range, 2.918-3.360 Å. Concomitant bridging of two silver atoms either by dppm and dtp ligands (1, 3 and 4) or two dtp ligands (8) lead to close silver-silver contacts. The diphosphines (dppe and dppb) with longer spacer appeared to favor 1D or 2D polymers due to the flexibility of the spacer within the diphosphine unit by adopting anti conformation as opposed to syn conformation of the dppm linker is revealed in complexes.  相似文献   

13.
Copper and Silver Clusters with Bridging Imido and Amido Ligands From the reactions of copper and silver chloride with tertiary phosphines and lithiated aniline the compounds [{Li(dme)3}4][Cu18(NPh)11] ( 1 ) and [Ag6(NHPh)4(PnPr3)6Cl2] ( 2 ) were obtained. The structure of the anion in 1 is closely related to the structures of the reported clusters [Cu12(NPh)8]4– [1] and [Cu24(NPh)14]4– [2]: 1 represents the third phenyl imido bridged copper cluster which contains parallel Cu3‐ and Cu6‐planes. The dimeric compound 2 consists of two Ag3 units with bridging phenyl amido ligands. Two chloride and six phosphine ligands complete the ligand sphere and shield the metal core effectively.  相似文献   

14.
The three‐dimensional coordination polymer poly[[bis(μ3‐2‐aminoacetato)di‐μ‐aqua‐μ3‐(naphthalene‐1,5‐disulfonato)‐hexasilver(I)] dihydrate], {[Ag6(C10H6O6S2)(C2H4NO2)4(H2O)2]·2H2O}n, based on mixed naphthalene‐1,5‐disulfonate (L1) and 2‐aminoacetate (L2) ligands, contains two AgI centres (Ag1 and Ag4) in general positions, and another two (Ag2 and Ag3) on inversion centres. Ag1 is five‐coordinated by three O atoms from one L1 anion, one L2 anion and one water molecule, one N atom from one L2 anion and one AgI cation in a distorted trigonal–bipyramidal coordination geometry. Ag2 is surrounded by four O atoms from two L2 anions and two water molecules, and two AgI cations in a slightly octahedral coordination geometry. Ag3 is four‐coordinated by two O atoms from two L2 anions and two AgI cations in a slightly distorted square geometry, while Ag4 is also four‐coordinated by two O atoms from one L1 and one L2 ligand, one N atom from another L2 anion, and one AgI cation, exhibiting a distorted tetrahedral coordination geometry. In the crystal structure, there are two one‐dimensional chains nearly perpendicular to one another (interchain angle = 87.0°). The chains are connected by water molecules to give a two‐dimensional layer, and the layers are further bridged by L1 anions to generate a novel three‐dimensional framework. Moreover, hydrogen‐bonding interactions consolidate the network.  相似文献   

15.
Two polymorphs of the title compound, (C8H20N)[W2S4(S4)(C15H22BN6)], have been obtained unexpectedly by attempted recrystallization of a mixed‐metal–sulfur cluster complex from different solvents. The dinuclear complex anion contains WV in two different coordination environments, one of them distorted octahedral with a tris(pyrazolyl)borate anion, a terminal sulfide and two bridging sulfide ligands, the other distorted square‐pyramidal with a terminal sulfide, two bridging sulfide and a chelating tetrasulfide ligand. The three independent anions in the two polymorphs have essentially the same geometry. The central W2S2 ring is a slightly folded rhombus with acute angles at the S atoms, and the WS4 chelate ring is an envelope with one noncoordinating S atom as the flap. The second polymorph, with Z′ = 2 and pseudo‐inversion symmetry relating the anions of the asymmetric unit, also displays pseudo‐translation features in its layer structure, and all examined crystals were found to be twinned, possibly as a consequence of this structural feature.  相似文献   

16.
Poly[[μ4‐4,4′‐bipyridazine‐μ5‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C8H6N4)]·H2O}n, (I), and poly[[aqua‐μ4‐pyridazino[4,5‐d]pyridazine‐μ3‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C6H4N4)(H2O)]·H2O}n, (II), possess three‐ and two‐dimensional polymeric structures, respectively, supported by N‐tetradentate coordination of the organic ligands [Ag—N = 2.208 (3)–2.384 (3) Å] and O‐pentadentate coordination of the sulfate anions [Ag—O = 2.284 (3)–2.700 (2) Å]. Compound (I) is the first structurally examined complex of the new ligand 4,4′‐bipyridazine; it is based upon unprecedented centrosymmetric silver–pyridazine tetramers with tetrahedral AgN2O2 and trigonal–bipyramidal AgN2O3 coordination of two independent AgI ions. Compound (II) adopts a typical dimeric silver–pyridazine motif incorporating two kinds of square‐pyramidal AgN2O3 AgI ions. The structure exhibits short anion–π interactions involving noncoordinated sulfate O atoms [O...π = 3.041 (3) Å].  相似文献   

17.
A crystallographic analysis is conducted of the structures of orthorhombic mineral sicherite TlAg2(As,Sb)3S6, monoclinic synthetic sulfide Tl3Ag3Sb2S6, and triclinic mineral raberite Tl5Ag4As6SbS15. In the first two structures, the large and heavy Tl+ cation forms, together with the other cations, ordered “skeletal” frameworks with F and I cation sublattices that are close to cubic ones. In the structure of raberite, the Tl and Ag cations undergo, together with the sulfur anions, two-dimensional ordering by a zone of closely packed crystallographic planes, which generate a pseudohexagonal symmetry. The deviations from the 1 cation/anion stoichiometry are compensated: in the second structure, by a local consolidation of cations (to a distance Tl–Ag = 2.96 Å) and, in the third structure, through the formation of a dumbbell pair As–Ag (2.68 Å), which occupies one position in the sublattice.  相似文献   

18.
Direct access of ternary copper-tin sulfide clusters by reactions of a binary organotin sulfide cluster, [(PhSn)4S6] ( A ), with transition metal complexes was achieved for the first time without extra addition of further chalcogenide sources. This indicates that an in situ rearrangement of the inorganic core takes place even without initial formation of anionic fragments. The use of [Cu(PPh3)3Cl] or [Cu(PPh3)2Cl2] as reactants yielded the ternary clusters [(CuPPh3)4(PhSn)18Cu6S31Cl2] ( 1 ) and [{Cu(PPh3)2}2(PhSn)3(SnCl)S8] ( 2 ), respectively. Whereas 1 represents the largest neutral Cu/Sn/S cluster known to date, compound 2 , which is the first example of a ternary Cu/Sn/E (E=S, Se) cluster containing copper in the +II oxidation state, may be viewed as a very early stage of cluster formation. Apparently, the presence of CuII inhibits effective cluster growth, which rationalizes the lack of such species so far. The two ternary clusters exhibit very similar optical absorption energies despite their markedly different cluster sizes. According to time-dependent DFT calculations, this is due to different characters of the electronic excitation in the triplet compound 2 , as compared to the excitation of the closed shell cluster 1 , which serve to compensate for the different extensions of the clusters.  相似文献   

19.
Selective crystallization of sulfate with a simple bis‐guanidinium ligand, self‐assembled in situ from terephthalaldehyde and aminoguanidinium chloride, was employed as an effective way to separate the highly hydrophilic sulfate anion from aqueous solutions. The resulting bis‐iminoguanidinium sulfate salt has exceptionally low aqueous solubility (Ksp=2.4×10?10), comparable to that of BaSO4. Single‐crystal X‐ray diffraction analysis showed the sulfate anions are sequestered as [(SO4)2(H2O)4]4? clusters within the crystals. Variable‐temperature solubility measurements indicated the sulfate crystallization is slightly endothermic (ΔHcryst=3.7 kJ mol?1), thus entropy driven. The real‐world utility of this crystallization‐based approach for sulfate separation was demonstrated by removing up to 99 % of sulfate from seawater in a single step.  相似文献   

20.
Engineering self‐templating inorganic architectures is critical for the development of bottom‐up approaches to nanoscience, but systems with a hierarchy of templates are elusive. Herein we describe that the cluster‐anion‐templated (CAT) assembly of a {CAT}?{Mo24Fe12} macrocycle forms a giant ca. 220 nm3 unit cell containing 16 macrocycles clustered into eight face‐shared tetrahedral cluster‐of‐clusters assemblies. We show that {CAT}?{Mo24Fe12} with different CATs gives the compounds 1 – 4 for CAT=Anderson {FeMo6} ( 1 ), Keggin {PMo12} ( 2 ), Dawson {P2W18} ( 3 ), and {Mo12O36(HPO3)2} ( 4 ) polyoxometalates. “Template‐free” assembly can be achieved, whereby the macrocycle components can also form a template in situ allowing template to macrocycle to superstructure formation and the ability to exchange the templates. Furthermore, the transformation of template clusters within the inorganic macrocycle {Mo24Fe12} allows the self‐generation of an uncapped {Mo12O36(HPO3)2} in compound 4 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号