首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A series of thirty-six novel 5-(2-(4-(benzo[d]isoxazol-3-yl)piperazin-1-yl)acetyl)indolin-2-one and 5-(2-(4-substitutedpiperazin-1-yl)acetyl)indolin-2-one analogues were synthesized, characterized and screened for their in vitro anti-tubercular activity against Mycobacterium tuberculosis H37Rv strain. These compounds exhibited minimum inhibitory concentration between 1.56 and 50 μg/mL. Among these derivatives, compounds 10c, 10d, 10j, 10o and 10v (MIC 6.25 μg/mL) displayed moderate activity, while compounds 10e, 10l, 10q, 10w,10x, 12d, 12e and 12i (MIC 3.12 μg/mL) showed good anti-tubercular activity and compounds 10f, 10k, 10p, 10r, 12f, 12j and 12k (MIC 1.56 μg/mL) exhibited excellent anti-tubercular activity. In addition, MTT assay was accomplished on the active analogues of the series against mouse macrophage (RAW 264.7) cells to evaluate the cytotoxic effect of the newly synthesized compounds and selectivity index of the compounds was determined.  相似文献   

3.
A series of benzenesulfonamide-appended [1,2,3]-triazole hybrids was synthesized by using [3 + 2] cycloaddition of primary, secondary, and tertiary sulfonamide azides with various phenoxymethylacetylenes under click reaction conditions. After structural characterization, the compounds were subjected to in-silico absorption, distribution, metabolism, excretion and toxicity (ADMET) screening to evaluate their drug-likeness and other pharmacokinetic parameters. Furthermore, their in vitro antiplasmodial potential was assessed against Plasmodium falciparum (3D7) strain, and some of the synthesized compounds displayed promising antimalarial potency. On cytotoxicity evaluation using MTT cell viability assay, the most active candidate N-(4,6-dimethylpyridin-2-yl)-4-(4-(4-nitrophenoxy)methyl)-1H-[1,2,3]-triazol-1-yl)benzenesulfonamide ( 14 ; IC50 6.2 μg/mL) demonstrated CC50 7.5 μg/mL against human hepatocarcinoma (HUH-7) cells.  相似文献   

4.
Imidazo[4,5‐c ]pyrazole derivatives ( 3a–f , 4a–f , and 5a–f ) were efficiently synthesized by one‐pot three‐component reactions using CeO2–MgO as the catalyst. The synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectroscopic analyses. The in vitro antimicrobial activity of the synthesized compounds against various bacterial and fungal strains was screened. Compound 3b was highly active [minimum inhibitory concentration (MIC): 0.5 μg/mL] against Gram‐positive Staphylococcus aureus , and compounds 3b , 3f , 4d , and 4e were highly active (MIC: 0.5, 2, 2, and 0.5 μg/mL, respectively) against Gram‐negative Pseudomonas aeruginosa and Klebsiella pneumoniae , relative to standard ciprofloxacin in the antibacterial activity screening. Compounds 3b and 4f were highly active (MIC: 4 and 0.5 μg/mL, respectively) against Aspergillus fumigatus and Microsporum audouinii in the antifungal activity screening compared with the clotrimazole standard.  相似文献   

5.
Ten propylene‐1H‐1,2,3‐triazole‐4‐methylene‐tethered isatin‐moxifloxacin hybrids 5a–j were synthesized via Cu‐promoted azide‐alkyne cycloaddition reaction, and screened for their in vitro anti‐mycobacterial activities against Mycobacterium tuberculosis H37Rv and multidrug‐resistant tuberculosis. The results showed that all the synthesized hybrids [minimum inhibitory concentration (MIC): 0.25–4.0 μg/mL] displayed considerable activities against the tested two strains, but all less active than the parent moxifloxacin (MIC: 0.10 and 0.12 μg/mL). The resistance index of the most targets was around 1, suggesting this kind of hybrids could reduce the cross–resistance to some extent. Among them, hybrid 5 g was found most active against Mycobacterium tuberculosis H37Rv with MIC of 0.39 μg/mL, which was comparable with rifampicin (MIC: 0.39 μg/mL), while conjugate 5a (MIC: 0.25 μg/mL) was 128– > 512 times more active than rifampicin (MIC: 32 μg/mL) and isoniazid (MIC: >128 μg/mL) against multidrug‐resistant tuberculosis.  相似文献   

6.
The prevalence of germs that are resistant to many antibiotics is rising rapidly the world over. There is a large group of researchers actively looking for better medicines. Here, we designed two series of hydrazonal and indeno[1,2-b]pyridin-5-one bearing hydrazone and azo-groups to test their antimicrobial activity. Molecular structures of all derivatives were assured based on their spectral data and elemental analyses. Results of the antimicrobial activity of the tested hydrazone and azo compounds showed promising potential for several derivatives. The minimum inhibitory concentrations (MICs) of hydrazones 4a - h and 6a - g displayed good antibacterial reactivities with a range of 3.91–250 μg/mL and moderate antifungal activity with a range of 15.6–500 μg/mL. The most promising hydrazone 4f and azo- 6a compounds demonstrated MIC values against Streptococcus faecalis and Escherichia coli equal to 3.91 and 7.81 μg/mL, respectively. Moreover, azo compound 6a showed MIC value equal to 3.91 μg/mL against Enterobacter cloacae species. Additionally, derivative 4f exhibited a significant inhibitory profile against the E. coli gyrase A enzyme (IC50 = 5.53 μg/mL). On the other hand, compound 6a (IC50 14.05 μg/mL) exhibited the lowest DNA gyrase inhibitory activity as compared to compounds 4f and reference standard drug novobiocin, IC50 5.53 and 1.88 μg/mL, respectively. Pharmacokinetic and pharmacodynamic profiles and molecular docking studies for the two most promising molecules 4f and 6a were computed and revealed that both compounds have good ADME profiles and high binding affinity to DNA gyrase binding site.  相似文献   

7.
《Tetrahedron》2019,75(25):3463-3471
Six new compounds, named conoideoglucosides A − C and conoideochromanes A − C, together with eight known compounds, including eutypinic acid, 2,2-dimethyl-2H-1-chromene-6-carboxylic acid, (−)-luteoskyrin, (−)-4a-oxyluteoskyrin, chrysophanol, islandicin, catenarin, and (22E)-5α,8α-epidioxyergosta-6,22-dien-3β-ol were isolated from the insect fungus Conoideocrella krungchingensis BCC53666. (−)-Luteoskyrin exhibited a broad range of antimicrobial activity such as antimalarial (IC50 0.51 μg/mL), antitubercular (MIC 6.25 μg/mL), antibacterial (both Gram positive; MIC 0.39–1.56 μg/mL and Gram negative; MIC 3.13–12.50 μg/mL), and antifungal (against various plant pathogens; MIC 3.13–50.00 μg/mL) activities, while (−)-4a-oxyluteoskyrin and catenarin showed weaker antibacterial activity. Moreover, eutypinic acid, (−)-luteoskyrin, (−)-4a-oxyluteoskyrin, and catenarin showed cytotoxicity against NCI-H187 cells with IC50 in a range of 0.16–17.99 μg/mL, while eutypinic acid and catenarin had no cytotoxicity against non-cancerous (Vero) cells at maximum tested concentration (50 μg/mL). The complete NMR spectral data and biological activity of the known (−)-4a-oxyluteoskyrin was also reported for the first time.  相似文献   

8.
Bioassay guided fractionation of an antimycobacterial extract of Foeniculum vulgare var dulce (Apiaceae) led to the isolation and characterization of 5-hydroxyfurano-coumarin. The chemical structure of this compound was elucidated by 1H and 13C (1D and 2D) Nuclear Magnetic Resonance (NMR) spectroscopy. In addition, the active fractions were analyzed by GC-MS and seventy eight compounds were identified; the major compounds were 1,3-benzenediol, 1-methoxycyclohexene, o-cymene, sorbic acid, 2-hydroxy-3-methyl-2-cyclopenten-1-one, estragole, limonene-10-ol and 3-methyl-2-cyclopenten-1-one. Twenty compounds identified in the active fractions were tested against one sensitive and three MDR strains of Mycobacterium tuberculosis using the Alamar Blue microassay. Compounds that showed some degree of antimycobacterial activity against all strains tested were the following: linoleic acid (MIC 100 μg/mL), oleic acid (MIC 100 μg/mL), 1,3-benzenediol (MIC 100-200 μg/mL), undecanal (MIC 50-200 μg/mL), and 2,4-undecadienal (MIC 25-50 μg/mL), the last being the most active compound. To our knowledge, this is the first report of the presence of 5-hydroxy-furanocoumarin in F. vulgare.  相似文献   

9.
This study presents the design, synthesis, spectral analysis, and in vitro antimicrobial evaluation of a new series of furan/thiophene‐1,3‐benzothiazin‐4‐one hybrids ( 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 ). New compounds were obtained by cyclization reaction of N‐substituted furan/thiophene‐2‐carboxamide derivatives ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ) with thiosalicylic acid. All synthesized compounds were screened for their in vitro antimicrobial activities using the broth microdilution method. Nine of the synthesized compounds showed good activity against Gram‐positive, Gram‐negative bacteria, and yeasts belonging to Candida spp. (MIC = 7.81–500 μg/mL), especially against Staphylococcus spp. (MIC = 15.62–62.5 μg/ml), Bacillus spp. (MIC = 7.81–62.5 μg/mL), Bordetella bronchiseptica ATCC 4617 (MIC = 62.5–125 μg/mL), and fungistatic activity against Candida spp. (MIC = 62.5–125 μg/mL).  相似文献   

10.
1,4-Naphthoquinones are an important class of compounds present in a number of natural products. In this study, a new series of 1,4-naphthoquinone derivatives were synthesized. All the synthesized compounds were tested for in vitro antimicrobial activity. In this present investigation, two Gram-positive and five Gram-negative bacterial strains and one pathogenic yeast strain were used to determine the antibacterial activity. Naphthoquinones tested for its antibacterial potencies, among seven of them displayed better antimicrobial activity against Staphylococcus aureus (S. aureus; 30–70 μg/mL). Some of the tested compounds showed moderate to low antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) and Salmonella bongori (S. bongori; 70–150 μg/mL). In addition, most active compounds against S. aureus were evaluated for toxicity to human blood cells using a hemolysis assay. For better understanding, reactive oxygen species (ROS) generation, time-kill kinetic study, and apoptosis, necrosis responses were investigated for three representative compounds.  相似文献   

11.
Synthesis of a series of new 4‐substituted‐3‐aryl‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazoles ( 2a , 2b , 2c , 2d , 2e , 2f , 2g , 3a , 3b , 3c , 3d , 3e , 3f , 3g , and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) is described. All the synthesized compounds were evaluated in vitro for their antibacterial activity against two gram‐positive and two gram‐negative bacteria, namely, Bacillus subtilis (MTCC 8509), Bacillus stearothermophilus (MTCC 8508), Escherichia coli (MTCC 51), and Pseudomonas putida (MTCC 121), and their activity was compared with two commercial antibiotics, streptomycin and chloramphenicol. Two compounds, namely, 3‐(4‐anisyl)‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2b ) and 3‐(2‐thienyl)‐1‐(2,6‐dimethyl pyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2g ) were found to be equipotent to streptomycin and chloramphenicol against gram‐negative bacteria, E. coli having minimum inhibitory concentration (MIC) value = 4 μg/mL. Compounds 4b and 4d also displayed good activity against E. coli with MIC = 8 μg/mL. J. Heterocyclic Chem., (2011).  相似文献   

12.
A novel series of fluorine‐containing quinoline hybrid thiosemicarbazide analogues ( 8a–8l ) were synthesized and tested for their biological activities. The antibacterial results demonstrated that compounds 8d and 8l [minimal inhibitory concentration (MIC) 62.5 μg/mL] were shown to have higher biological activity than ampicillin against Escherichia coli. Compound 8b (MIC 25 μg/mL) was shown to have the highest activity than was ampicillin against Staphylococcus aureus. The antifungal results demonstrated that compound 8j (MIC 100 μg/mL) has shown good activity. Most of the targeted compounds have shown potent antimalarial activity. Compounds 8d (0.19 μg/mL), 8g (0.30 μg/mL), 8h (0.36 μg/mL), 8k (0.10 μg/mL), 8l (0.28 μg/mL), 8k (0.10 μg/mL), and 8l (0.28 μg/mL) have notable activity than does the reference drug quinine. Compounds 8d (0.27 μg/mL), 8g (0.30 μg/mL), and 8k (0.17 μg/mL) have shown excellent activity against chloroquine‐resistant strain. The MTT assay performed on peripheral blood lymphocyte cultures showed a high percentage of lymphocyte viability [ 8d (99.64), 8g (99.46), 8h (98.83), and 8k (99.51)] at a maximum dose (10 μg/mL), depicting no cytotoxicity of these compounds on human lymphocytes in vitro. A molecular docking study was performed on Pf‐DHFR‐TS inhibitor. A molecular dynamics study has shown compound 8g to have better affinity with protein. ADME‐Tox and pharmacophore study of synthesized compounds suggested prediction of active site.  相似文献   

13.
In the present work, we synthesized a series of [1,2,4]triazolo[3,4‐b][1,3,4]thiadiazole derivatives ( 6a , 6b , 6c , 6d , 6e , 6f and 7a , 7b , 7c , 7d , 7e , 7f ) by using simple starting materials, namely, β‐amino acids and different aromatic acid hydrazides. The newly synthesized compounds were characterized by mass, IR, 1H, and13C‐NMR spectral data analysis. The newly synthesized compounds were tested for their antimicrobial activities and antioxidant properties. Compound 6c was a potent microbial agent particularly against Staphylococcus aureus (MIC 3.12 µg/mL) and Candida albicans (MIC 6.25 µg/mL) when compared with the reference drugs ciprofloxacin and fluconazole, respectively. The antioxidant activity of the synthesized compounds was also evaluated by 1,1‐diphenyl‐2‐picryl hydrazyl, nitric oxide, and hydrogen peroxide radical scavenging methods. Compounds 6c , 6f , 7c , and 7f showed good radical scavenging activity due to the presence of electron‐donating group on phenyl ring.  相似文献   

14.
A series of novel propylene tethered benzofuran–isatin hybrids 5a–j were designed, synthesized, and assessed for their in vitro anti‐mycobacterial activity against Mycobacterium tuberculosis (MTB) H37Rv and multidrug‐resistant (MDR)‐MTB strains. All hybrids exhibited promising anti‐mycobacterial activities against the tested two pathogens with minimum inhibitory concentration (MIC) ranging from 2 to 32 μg/mL, and the resistance index for a significant part of the hybrids was ≤1, indicating their potential for the treatment of drug‐resistant tuberculosis. Hybrid 5g (MIC: 2 and 4 μg/mL) was found to be the most active against MTB H37Rv and MDR‐MTB, which was eightfold and >32‐fold more active than the first‐line anti‐tuberculosis drugs rifampicin (MIC: 32 μg/mL) and isoniazid (MIC: >128 μg/mL) against MDR‐MTB, and it could act as a starting point for further optimization.  相似文献   

15.
In the present study, a series of new isoniazid-1,2,3-triazole conjugates ( 5a-k ) was synthesized via click chemistry approach. The newly synthesized compounds were assessed for their in vitro antitubercular and antimicrobial activities. The compound 5g has displayed potent antitubercular activity against Mycobacterium tuberculosis H37Rv (Mtb) with MIC value 1.56 μg/mL. The active compounds were screened for their cytotoxicity profile by MTT assay against RAW 264.7 cell line. The four compounds have shown good in vitro antimicrobial activities against both antibacterial and antifungal pathogens. A molecular docking study was accomplished to identify the probable mode of action of synthesized derivatives. These compounds have shown excellent binding affinity toward Enoyl-acp reductase (INHA) and DNA gyrase.  相似文献   

16.
A series of novel heteronuclear 5‐fluoroisatin dimers 4a–j tethered through ethylene were designed, synthesized, and examined for their in vitro anti‐mycobacterial activities against Mycobacterium tuberculosis H37Rv and multi‐drug resistant tuberculosis (MDR‐TB). All hybrids exhibited potential anti‐mycobacterial activities against the tested two strains with minimum inhibitory concentration (MIC) in a range of 25 to 256 μg/mL. In particular, the heteronuclear 5‐fluoroisatin dimer 4a (MIC: 25 and 32 μg/mL) was most active against Mycobacterium tuberculosis H37Rv and MDR‐TB strains, which was twofold and greater than fourfold more potent than rifampicin (MIC: 64 μg/mL) and isoniazid (MIC: >128 μg/mL) against MDR‐TB, warrant further optimization.  相似文献   

17.
A new series of quinazolinones containing hydrazone moiety were synthesized, and their inhibitory activities on urease were assessed in vitro. Most of the compounds exhibited potent urease inhibitory activity. Among the synthesized compounds, molecule 4a bearing furan ring has the best inhibitory effect against urease with IC50 = 2.90 ± 0.11 μg/mL. Compounds 4f , 4g , 4h , 4i , and 4j have hydroxy group on phenyl ring. Compound 4i is the most active inhibitor among these compounds with IC50 = 5.01 ± 0.10 μg/mL, which has 3‐Cl and 4‐Br on phenyl ring. Also, newly synthesized compounds had been tested for their antimicrobial effects against three of Gram‐positive bacteria (Bacillus cereus 702 Roma, Staphylococcus aureus ATCC 25923, and Streptococcus pyogenes ATCC 19615) and three of Gram‐negative bacteria (Escherichia coli ATCC 25922, Proteus vulgaris ATCC 13315, and Pseudomonas aeruginosa ATCC 27853). Antimicrobial activity results show that compounds 4a , 4h , 4j , 4f , and 4l have the lowest minimum inhibitory concentration (MIC) value of 1000 μg/mL to all tested bacteria. The other compounds have the MIC value of >1000 μg/mL to all tested bacteria.  相似文献   

18.
A series of 10 p-substitutedbenzoylmethylene hydrazide derivatives 4a-j were synthesized by protecting carboxylic group of 4-hydroxybenzoic acid using methanol and sulfuric acid than reacting it with hydrazide to form 4-hydroxybenzohydrazide followed by reacting with a variety of aldehydes and evaluated for their activity against nosocomial infection. All the synthesized compounds were characterized by Fourier-transform infrared (FT-IR), 1H nuclear magnetic resonance (NMR), and mass spectral data. The in vitro antimicrobial potential of synthesized compounds was estimated against prominent strains of nosocomial pathogens (Staphylococcus aureus, Escherichia coli, and Aspergillus niger). The antimicrobial evaluation revealed compounds 4b , 4c , 4d , 4e , 4f , and 4j to be the most active compounds of the series with IC50 value for antibacterial in the range 0.39 to 0.75 μM/mL. Furthermore, the in vitro cytotoxic potential of the compounds was appraised by hemolytic assay. The results showed that some of the synthesized compounds exhibited marked activity.  相似文献   

19.
A new class of diethylene glycol tethered moxifloxacin–isatin hybrids 5a–l was designed, synthesized, and evaluated for their in vitro antimycobacterial activity against Mycobacterium tuberculosis (MTB) H37Rv and multidrug‐resistant tuberculosis (MDR‐TB) strains. Our results showed that all hybrids with higher lipophilicity than the parent moxifloxacin exhibited promising activity against the tested strains with minimum inhibitory concentration (MIC) in a range of 0.2–16 μg/mL. In particular, hybrid 5h (MIC: 0.20 and 0.5 μg/mL), which was found to be most active against MTB H37Rv and MDR‐TB, was twofold more potent than isoniazid (MIC: 0.39 μg/mL) against MTB H37Rv and ≥64‐fold more active than isoniazid and rifampicin (MIC: >128 and 32 μg/mL, respectively) against MDR‐TB.  相似文献   

20.
A new series of benzosuberone-piperazine hybrids 6a to j were designed and synthesized efficiently in good yields and their structures were confirmed by 1H NMR, 13C NMR, ESI-MS and HRMS. The newly synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram positive, Gram negative bacterial strains and a fungal strain. Among the synthesized compounds, compounds 6c , 6d , 6e , 6f , 6g and 6h exhibited potent antibacterial activity with MIC value of 1.9 μg/mL against Gram positive and Gram negative organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号