首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of tetravalent An(IV) complexes with a bis-phenyl β-ketoiminate N,O donor ligand has been synthesized with the aim of identifying bonding trends and changes across the actinide series. The neutral molecules are homoleptic with the formula An((Ar)acnac)(4) (An = Th (1), U (2), Np (3), Pu (4); (Ar)acnac = ArNC(Ph)CHC(Ph)O; Ar = 3,5-(t)Bu(2)C(6)H(3)) and were synthesized through salt metathesis reactions with actinide chloride precursors. NMR and electronic absorption spectroscopy confirm the purity of all four new compounds and demonstrate stability in both solution and the solid state. The Th, U, and Pu complexes were structurally elucidated by single-crystal X-ray diffraction and shown to be isostructural in space group C2/c. Analysis of the bond lengths reveals shortening of the An-O and An-N distances arising from the actinide contraction upon moving from 1 to 2. The shortening is more pronounced upon moving from 2 to 4, and the steric constraints of the tetrakis complexes appear to prevent the enhanced U-O versus Pu-O orbital interactions previously observed in the comparison of UI(2)((Ar)acnac)(2) and PuI(2)((Ar)acnac)(2) bis-complexes. Computational analysis of models for 1, 2, and 4 (1a, 2a, and 4a, respectively) concludes that both the An-O and the An-N bonds are predominantly ionic for all three molecules, with the An-O bonds being slightly more covalent. Molecular orbital energy level diagrams indicate the largest 5f-ligand orbital mixing for 4a (Pu), but spatial overlap considerations do not lead to the conclusion that this implies significantly greater covalency in the Pu-ligand bonding. QTAIM bond critical point data suggest that both U-O/U-N and Pu-O/Pu-N are marginally more covalent than the Th analogues.  相似文献   

2.
The relationship between structure and bonding in actinide 6d(0)5f(0) MX(6)(q)() complexes (M = Th, Pa, U, Np; X = H, F; q = -2,-1, 0, +1) has been studied, based on density functional calculations with accurate relativistic actinide pseudopotentials. The detailed comparison of these prototype systems with their 5d(0) transition metal analogues (M = Hf, Ta, W, Re) reveals in detail how the 5f orbitals modify the structural preferences of the actinide complexes relative to the transition metal systems. Natural bond orbital analyses on the hydride complexes indicate that 5f orbital involvement in sigma-bonding favors classical structures based on the octahedron, while d orbital contributions to sigma-bonding favor symmetry lowering. The respective roles of f and d orbitals are reversed in the case of pi-bonding, as shown for the fluoride complexes.  相似文献   

3.
Treatment of M[N(SiMe3)2]3 (M = U, Pu (An); La, Ce (Ln)) with NH(EPPh2)2 and NH(EPiPr2)2 (E = S, Se), afforded the neutral complexes M[N(EPR2)2]3 (R = Ph, iPr). Tellurium donor complexes were synthesized by treatment of MI3(sol)4 (M = U, Pu; sol = py and M = La, Ce; sol = thf) with Na(tmeda)[N(TePiPr2)2]. The complexes have been structurally and spectroscopically characterized with concomitant computational modeling through density functional theory (DFT) calculations. The An-E bond lengths are shorter than the Ln-E bond lengths for metal ions of similar ionic radii, consistent with an increase in covalent interactions in the actinide bonding relative to the lanthanide bonding. In addition, the magnitude of the differences in the bonding is slightly greater with increasing softness of the chalcogen donor atom. The DFT calculations for the model systems correlate well with experimentally determined metrical parameters. They indicate that the enhanced covalency in the M-E bond as group 16 is descended arises mostly from increased metal d-orbital participation. Conversely, an increase in f-orbital participation is responsible for the enhancement of covalency in An-E bonds compared to Ln-E bonds. The fundamental and practical importance of such studies of the role of the valence d and f orbitals in the bonding of the f elements is emphasized.  相似文献   

4.
《中国化学会会志》2017,64(4):369-378
In the present research, the impact of substitution on the dipole moment, electronic structure, and frontier orbital energy in trans ‐(H3P )22‐BH4 )W(≡C‐para ‐C6H4X )(CO ) complexes (X = H, F, SiH3 , CN , NO2 , SiMe3 , CMe3 , NH2 , NMe2 ) was studied with mpw1pw91 quantum chemical computations. The nature of the chemical bond between the trans‐[Cl(η2‐BH4 )(H3P ) 2W ] and [C‐para ‐C6H4X ]+ fragments was demonstrated through energy decomposition analysis (EDA ). The percentage composition in terms of the specified groups of frontier orbitals was examined for these complexes to investigate the feature in metal–ligand bonds. Quantum theory of atoms in molecules (QTAIM ) and natural bond orbital (NBO ) analysis were applied to elucidate these complexes’ metal–ligand bonds.  相似文献   

5.

The most practicable complexes formed between Cryptand[2.2.2] and hydrated Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) cations (denoted as [ML]+2) were modeled using computational chemistry methods. The energies of complexation reactions were calculated in both gas phase and solution at B3LYP/6-31+G(d) and B3LYP/6-311++G(3df,2pd) levels of theory. The accuracy of selected computational methods was confirmed with comparison between available X-ray data and computational results. The results suggested that [CuL]+2 and [CoL]+2 structures could be the most and the least stable systems, respectively. The nature of metal-ligand interactions based on quantum theory of atoms in molecule (QTAIM) was discussed for all the complexes. This analysis confirmed the ionic nature of metal-ligand interactions due to electron density values for M-O bonds and M-N interactions. Natural bond orbital (NBO) and natural energy decomposition analysis (NEDA) were utilized to explain more details of interaction between divalent cations and donor atoms of the ligand.

  相似文献   

6.
The title compounds are studied with scalar relativistic, gradient-corrected (PBE) and hybrid (PBE0) density functional theory. The metal-Cp centroid distances shorten from ThCp(3) to NpCp(3), but lengthen again from PuCp(3) to CmCp(3). Examination of the valence molecular orbital structures reveals that the highest-lying Cp π(2,3)-based orbitals transform as 1e + 2e + 1a(1) + 1a(2). Above these levels come the predominantly metal-based 5f orbitals, which stabilise across the actinide series such that in CmCp(3) the 5f manifold is at more negative energy than the Cp π(2,3)-based levels. Mulliken population analysis shows metal d orbital participation in the e symmetry Cp π(2,3)-based orbitals. Metal 5f character is found in the 1a(1) and 1a(2) levels, and this contribution increases significantly from ThCp(3) to AmCp(3). This is in agreement with the metal spin densities, which are enhanced above their formal value in NpCp(3), PuCp(3) and especially AmCp(3) with both PBE and PBE0. However, atoms-in-molecules analysis of the electron densities indicates that the An-Cp bonding is very ionic, increasingly so as the actinide becomes heavier. It is concluded that the large metal orbital contributions to the Cp π(2,3)-based levels, and enhanced metal spin densities toward the middle of the actinide series arise from a coincidental energy match of metal and ligand orbitals, and do not reflect genuinely increased covalency (in the sense of appreciable overlap between metal and ligand levels and a build up of electron density in the region between the actinide and carbon nuclei).  相似文献   

7.
The synthesis of a rare trivalent Th(3+) complex, (C(5)Me(5))(2)[(i)PrNC(Me)N(i)Pr]Th, initiated a density functional theory analysis on the electronic and molecular structures of trivalent actinide complexes of this type for An = Th, Pa, U, Np, Pu, and Am. While the 6d orbital is found to accommodate the unpaired spin in the Th(3+) species, the next member of the series, Pa, is characterized by an f(2) ground state, and later actinides successively fill the 5f shell. In this report, we principally examine the evolution of the bonding as one advances along the actinide row. We find that the early actinides (Pa-Np) are characterized by localized f orbitals and essentially ionic bonding, whereas the f orbitals in the later members of the series (Pu, Am) exhibit significant interaction and spin delocalization into the carbon- and nitrogen-based ligand orbitals. This is perhaps counter-intuitive since the f orbital radius and hence metal-ligand overlap decreases with increasing Z, but this trend is counter-acted by the fact that the actinide contraction also leads to a stabilization of the f orbital manifold that leads to a near degeneracy between the An 5f and cyclopentadienyl π-orbitals for Pu and Am, causing a significant orbital interaction.  相似文献   

8.
The kinetics of thermal decomposition of polyacrylamide under a nitrogen atmosphere are studied in the presence of adsorbed metal ions using rising temperature thermogravimetry. Results are analysed using the method of Coates and Redfern15 and indicate that all of the metal ions, except Tl(I), Hg(I) and Ni(II), stabilize the polymer against degradation. Attempts are made to correlate both initial and total activation energies for degradation with various parameters, including reciprocal ionic radii, ionization potentials, electronegativity and ligand field stabilization energy, to obtain a better understanding of the mechanism of stabilization. The best correlations are between the total activation energy and either reciprocal ionic radii, or the Kahwa-Mulokozi function involving covalent and ionic radii, and ionization potentials. It is suggested that both covalent and ionic interactions in the polymer-metal ion complexes may be important in the stabilization.  相似文献   

9.
The ability of diverse metal cations to form complexes with cyanin has been investigated by means of Density Functional Theory (DFT) and the Quantum Theory of Atoms in Molecules (QTAIM). The strongest preference is shown by trivalent metals which exceed that of Mg(II), indicating that ion replacement processes are suitable detoxification mechanisms for plants. Molecular structure analysis indicates that the larger the metal affinity of Cy the longer the C2-C1’ bond length and smaller ρb value. This is understood as upon metal complexation the Cy ligand molecular structure is more compatible with a dienolate-like structure rather than the 4′-keto-quinoidal-like structure. The weight of the former increases as stronger the binding. QTAIM charges indicate that the stronger the binding energy the larger the charge transfer from Cy to the metal, reducing its positive charge below the values indicated by the corresponding Lewis structure.  相似文献   

10.
The energies, geometries and harmonic vibrational frequencies of 1:1 5‐hydroxytryptamine‐water (5‐HT‐H2O) complexes are studied at the MP2/6‐311++G(d,p) level. Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) analyses and the localized molecular orbital energy decomposition analysis (LMO‐EDA) were performed to explore the nature of the hydrogen‐bonding interactions in these complexes. Various types of hydrogen bonds (H‐bonds) are formed in these 5‐HT‐H2O complexes. The intermolecular C4H55‐HT···Ow H‐bond in HTW3 is strengthened due to the cooperativity, whereas no such cooperativity is found in the other 5‐HT‐H2O complexes. H‐bond in which nitrogen atom of amino in 5‐HT acted as proton donors was stronger than other H‐bonds. Our researches show that the hydrogen bonding interaction plays a vital role on the relative stabilities of 5‐HT‐H2O complexes.  相似文献   

11.
Laser-ablated lanthanide metal atoms were condensed with CH(2)F(2) in excess argon at 6 K or neon at 4 K. New infrared absorption bands are assigned to the oxidative addition product methylene lanthanide difluorides on the basis of deuterium substitution and vibrational frequency calculations with density functional theory (DFT). Two dominant absorptions in the 500 cm(-1) region are identified as lanthanide-fluoride stretching modes for this very strong infrared absorption. The predominantly lanthanide-carbon stretching modes follow a similar trend of increasing with metal size and have characteristic 30 cm(-1) deuterium and 14 cm(-1) (13)C isotopic shifts. The electronic structure calculations show that these CH(2)LnF(2) complexes are not analogous to the simple transition and actinide metal methylidenes with metal-carbon double bonds that have been investigated previously, because the lanthanide metals (in the +2 or +3 oxidation state) do not appear to form a π-type bond with the CH(2) group. The DFT and ab initio correlated molecular orbital theory calculations predict that these complexes exist as multiradicals, with a Ln-C σ bond and a single electron on C-2p weakly coupled with f(x) (x = 1 (Ce), 2 (Pr), 3(Nd), etc.) electrons in the adjacent Ln-4f orbitals. The Ln-C σ bond is composed of about 15% Ln-5d,6s and 85% C-sp(2) hybrid orbital. The Ln orbital has predominantly 6s and 5d character with more d-character for early lanthanides and increasing amounts of s-character across the row. The Ln-F bonds are almost purely ionic. Accordingly, the argon-neon matrix shifts are large (13-16 cm(-1)) for the ionic Ln-F bond stretching modes and small (~1 cm(-1)) for the more covalent Ln-C bond stretching modes.  相似文献   

12.
In the current study, the coordination chemistry of nine-coordinate Ac(III) complexes with 35 monodentate and bidentate ligands was investigated using density functional theory (DFT) in terms of their geometries, charges, reaction energies, and bonding interactions. The energy decomposition analysis with naturals orbitals for chemical valence (EDA-NOCV) and the quantum theory of atoms in molecules (QTAIM) were employed as analysis methods. Trivalent Ac exhibits the highest affinities toward hard acids (such as charged oxophilic donors, fluoride), so its classification as a hard acid is justified. Natural population analysis quantified the involvement of 5f orbitals on Ac to be about 30% of total valence electron natural configuration indicating that Ac is a member of the actinide series. Pearson correlation coefficients were used to study the pairwise correlations among the bond lengths, ΔG reaction energies, charges on Ac and donor atoms, and data from EDA-NOCV and QTAIM. Strong correlations and anticorrelations were found between Voronoi charges on donor atoms with ΔG, EDA-NOCV interaction energies and QTAIM bond critical point densities.  相似文献   

13.
A systematic quantum chemical study of the bonding in d6-transition-metal complexes, containing phosphine-stabilized, main-group-element fragments, (R3P)2E, as ligands (E=AlH, BH, CH+, C), is reported. By using energy decomposition analysis, it is demonstrated that a strong M−E bond is accompanied by weak P−E bonds, and vice versa. Although the Al−M bond is, for example, found to be very strong, the weak Al−P bond suggests that the corresponding metal complexes will not be stable towards phosphine dissociation. The interaction energies for the boron(I)-based ligand are lower, but still higher than those for two-carbon-based ligands. For neutral ligands, electrostatic interactions are the dominating contributions to metal–ligand bonding, whereas for the cationic ligand a significant destabilization, with weak orbital and even weaker electrostatic metal–ligand interactions, is observed. Finally, for iron(II) complexes, it is demonstrated that different reactivity patterns are expected for the four donor groups: the experimentally observed reversible E−H reductive elimination of the borylene-based ligand (E=BH) exhibits significantly higher barriers for the protonated carbodiphosphorane (CDP) ligand (E=CH) and would proceed through different intermediates and transition states. For aluminum, such reaction pathways are not feasible (E=AlH). Moreover, it is demonstrated that the metal hydrido complexes with CDP ligands might not be stable towards reduction and isomerization to a protonated CDP ligand and a reduced metal center.  相似文献   

14.
The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe173+, ThHe174+, and PaHe174+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHen 3+ (n =1–17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge‐induced dipole bonding. Excellent correlations (R 2>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac−He distances, and also with the incremental He binding energies.  相似文献   

15.
The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe173+, ThHe174+, and PaHe174+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHen3+ (n=1–17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R2>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac−He distances, and also with the incremental He binding energies.  相似文献   

16.
Density functional theory calculations were performed at the B3LYP/6‐311++G(d,p) level to systematically explore the geometrical multiplicity and binding strength for the complexes formed by alkaline and alkaline earth metal cations, viz. Li+, Na+, K+, Be2+, Mg2+, and Ca2+ (Mn+, hereinafter), with 2‐(3′‐hydroxy‐2′‐pyridyl)benzoxazole. A total of 60 initial structures were designed and optimized, of which 51 optimized structures were found, which could be divided into two different types: monodentate complexes and bidentate complexes. In the cation‐heteroatom complex, bidentate binding is generally stronger than monodentate binding, and of which the bidentate binding with five‐membered ring structure has the strongest interaction. Energy decomposition revealed that the total binding energies mainly come from electrostatic interaction for alkaline metal ion complexes and orbital interaction energy for alkaline earth metal ion complex. In addition, the electron localization function analysis show that only the Be? O and Be? N bond are covalent character, and others are ionic character. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The complexes of trivalent actinide (Am(III) and Cm(III)) and lanthanide (Nd(III) and Sm(III)) cations with bis(2,4,4-trimethylpentyl)phosphinic acid, bis(2,4,4-trimethylpentyl)monothiophosphinic acid, and bis(2,4,4-trimethylpentyl)dithiophosphinic acid in n-dodecane have been studied by visible absorption spectroscopy and X-ray absorption fine structure (XAFS) measurements in order to understand the chemical interactions responsible for the great selectivity the dithiophosphinate ligand exhibits for trivalent actinide cations in liquid-liquid extraction. Under the conditions studied, each type of ligand displays a different coordination mode with trivalent f-element cations. The phosphinate ligand coordinates as hydrogen-bonded dimers, forming M(HL2)3. Both the oxygen and the sulfur donor of the monothiophosphinate ligand can bind the cations, affording both bidentate and monodentate ligands. The dithiophosphinate ligand forms neutral bidentate complexes, ML3, with no discernible nitrate or water molecules in the inner coordination sphere. Comparison of the Cm(III), Nd(III), and Sm(III) XAFS shows that the structure and metal-donor atom bond distances are indistinguishable within experimental error for similarly sized trivalent lanthanide and actinide cations, despite the selectivity of bis(2,4,4-trimethylpentyl)dithiophosphinic acid for trivalent actinide cations over trivalent lanthanide cations.  相似文献   

18.
The isostructural compounds of the trivalent actinides uranium, neptunium, plutonium, americium, and curium with the hydridotris(1-pyrazolyl)borato (Tp) ligand An[η3-HB(N2C3H3)3]3 (AnTp3) have been obtained through several synthetic routes. Structural, spectroscopic (absorption, infrared, laser fluorescence) and magnetic characterisation of the compounds were performed in combination with crystal field, density functional theory (DFT) and relativistic multiconfigurational calculations. The covalent bonding interactions were analysed in terms of the natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) models.  相似文献   

19.
《中国化学会会志》2017,64(11):1340-1346
In this investigation, we describe substituent effect on the dipole moment, ionization potential, electron affinity, structure, frontier orbitals energy, in the trans‐Cl(OC)(H3P)3W(≡C‐para‐C6H4X) (X = H, F, SiH3, CN, NO2, SiMe3, CMe3, NH2, NMe2) complexes using MPW1PW91 quantum chemical calculations. The nature of chemical bond between the [Cl(OC)(H3P)3W] and [C‐para‐C6H4X]+ fragments was illustrated with energy decomposition analysis (EDA). Percentage composition in terms of the defined groups of frontier orbitals for these complexes was inspected to investigate the character in metal–ligand bonds. Quantum theory of atoms in molecules (QTAIM) was used for illustration of metal–ligand bonds in these complexes.  相似文献   

20.
The noble-gas molecules, HKrOX (with X = F, Cl, Br and I), have been investigated by ab initio calculation. Equilibrium geometry, harmonic and anharmonic vibrational frequencies, energies, partial charges are calculated. All HKrOX molecules studied here are bound equilibrium structures with Cs symmetry. The frequency calculation indicates that the H-Kr stretching mode is anharmonic and is very likely to be observed in the experiments. The two-body decomposition reaction is exothermic and lead to products of Kr as well as HOX, while the three-body decomposition reaction is also exothermic with respect to the neutral decomposition products (H + Kr + OX). Moreover, HKrOX is kinetically stable with respect to the decomposition reactions due to the enough high energy barriers, which indicates the possibility to identify these HKrOX compounds in noble-gas matrices. The bonding in HKrOX is studied by QTAIM analysis and the localized molecular orbital energy decomposition analysis (LMO-EDA) method at the MP2 level of theory with a large basis set. The results show that HKrOX is a typical ionic bond, denoted as (HKr)(+)(OX)(-), and the electrostatic interaction between (HKr)(+) and (OX)(-) makes the main contribution to the ionic bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号