首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
采用种子乳液聚合法,以水性聚氨酯为分散液,醋酸乙烯酯(VAc)、马来酸二丁酯(DBM)、丙烯酸(AA)为主单体,2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为功能单体,成功制备了羧基型共聚乳液,进一步考察了AMPS用量对乳液基本性能的影响,并首次将其用于尾矿库区的生态修复。实验结果表明:当AMPS用量在3%时,该共聚乳液用于尾矿库区固定尾砂的效果最好,且该共聚乳液形成胶膜的拉伸强度与固定尾砂时抗压强度呈现正相关性。另外,通过共聚乳液对尾砂的抗热老化、抗冻耐温、保水性及固定重金属离子稳定性等研究发现,羧基型共聚乳液能够有效实现尾矿库区的污染控制。微生物实验说明,羧基型共聚乳液作为尾矿库区修复剂使用时,具有良好的生态效应。这表明所制备的羧基型共聚乳液能够用于尾矿库区的污染控制与生态修复。  相似文献   

2.
通过浸渍法制备了一系列负载0.5%(重量百分比)Pd的氧化铈-氧化锆(NDK-84,由日本新日本电工株式会社提供)催化剂材料,并通过全面的表征手段,包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HR-TEM)、元素分布、X-射线衍射(XRD),氮气吸脱附测试与比表面积和孔径分布分析(BET)、X射线光电子能谱(XPS)等,研究了不同Pd前驱体和不同热老化处理条件、H2还原条件对Pd在铈锆固溶体上的分散、生长与烧结行为的影响,并评估了它们的三效催化活性.结果表明,热老化处理过程与还原过程显著影响了Pd在氧化物载体表面上的分散,因此导致不同的催化活性.  相似文献   

3.
In this work, a water-soluble gold nanoparticle-encapsulated polyaniline nanocomposite (AuNP-PANI) was prepared in the presence of an ionic surfactant such as cetyltrimethylammonium bromide (CTAB) using versatile two steps method. The prepared nanoparticles (AuNPs) were characterized by UV–Visible spectroscopy, Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS). The nanocomposite (AuNP-PANI) were initially characterized using UV–Visible spectroscopy, Transmission Electron Microscope (TEM), Scanning Transmission Electron Microscope (STEM) and DLS. The structure and composition of AuNP-PANI further characterized using Fourier Transmission Infrared Spectroscopy (FTIR), X-ray diffraction study (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and Thermogravimetric analysis (TGA). Electrochemical properties of AuNP-PANI were studied using Cyclic Voltammetry (CV). The prepared nanocomposite exhibited good surface enhanced Raman scattering (SERS) of 4-amino thiophenol (4-ATP) and 4- (dimethyl amino) pyridine (4-DMAP) for which the enhancement factor (EF) were found to be1.95 × 105 and 2.016 × 105, respectively. The nanocomposite also showed excellent catalytic activity for the chemical degradation of Congo red (CR) and methylene blue (MB) as evidenced from the calculated rate constants which were determined to be 0.30 s−1 and 0.33 s−1, respectively.  相似文献   

4.
A reliable and efficient route for preparing thermoresponsive hollow microgels based on cross-linked poly(N-isopropyl acrylamide) (PNIPAM) was developed. Firstly, monodisperse thermoresponsive core–shell microspheres composed of a P(styrene (St)-co-NIPAM) core and a cross-linked PNIPAM shell were prepared by seeded emulsion polymerization using P(St-co-NIPAM) particles as seeds. The size of the P(St-co-NIPAM) core can be conveniently tuned by different dosages of sodium dodecyl sulfate. The thickness of the cross-linked PNIPAM shell can be controlled by varying the dosage of NIPAM in the preparation of PNIAPM shell. Then, hollow PNIPAM microgels were obtained by simply dissolving the P(St-co-NIPAM) core with tetrahydrofuran. The core–shell microspheres and the hollow microgels were characterized by transmission electron microscopy, dynamic light scattering, atomic force microscopy, and Fourier-transform infrared spectroscopy.  相似文献   

5.
The comb‐type grafted hydrogels poly(N‐isopropylacrylamide)‐g‐poly(N‐isopropylacrylamide) (PNIPAM‐g‐PNIPAM) and poly(acrylic acid)‐g‐poly(N‐isopropylacrylamide) (PAAc‐g‐PNIPAM) were prepared by reversible addition–fragmentation chain transfer polymerization. A macromolecular chain‐transfer agent was prepared first. Then, hydrogels were obtained by a reaction with a comonomer (N‐isopropylacrylamide or acrylic acid) in the presence of N,N‐methylenebisacrylamide as a crosslinker. The equilibrium swelling ratios and the swelling and deswelling kinetics of PNIPAM‐g‐PNIPAM were measured. The effects of the chain length and amount on the swelling behavior were investigated. The deswelling mechanism was illustrated. Meanwhile, the PAAc‐g‐PNIPAM hydrogel was used to confirm the versatility of this novel method. It was prepared in an alcoholic medium, whereas hydrogen‐bonding complexes formed in 1,4‐dioxane, which was chosen as the reaction medium for the PNIPAM‐g‐PNIPAM hydrogel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2615–2624, 2005  相似文献   

6.
Preparation and characterization of poly(N‐isopropylacrylamide) (PNIPAM) polymer brushes on the surfaces of reduced graphene oxide (RGO) sheets based on click chemistry and reversible addition‐fragmentation chain transfer (RAFT) polymerization was reported. RGO sheets prepared by thermal reduction were modified by diazonium salt of propargyl p‐aminobenzoate, and alkyne‐functionalized RGO sheets were obtained. RAFT chain transfer agent (CTA) was grafted to the surfaces of RGO sheets by click reaction. PNIPAM on RGO sheets was prepared by RAFT polymerization. Fourier transform‐infrared spectroscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and transmission electron microscopy (TEM) results all demonstrated that RAFT CTA and PNIPAM were successfully produced on the surfaces of RGO sheets. Nanosized PNIPAM domains on RGO sheets were observed on TEM. Micro‐DSC result indicated that in aqueous solution PNIPAM on RGO sheets presented a lower critical solution temperature at 33.2 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Pyrrolyl‐capped poly(N‐isopropylacrylamide) macromonomers (Py‐PNIPAM) were prepared through reversible addition‐fragmentation‐transfer polymerization with benzyl 1‐pyrrolylcarbodithioate as chain‐transfer agent. Polymerizations of Py‐PNIPAM with/without pyrrole using AgNO3 as oxidizing agent and dimethylforamide as solvent resulted in graft copolymers of polypyrrole‐graft‐poly(N‐isopropylacrylamide) (PPy‐g‐PNIPAM) as well as silver nanoparticles, leading to the formation of PPy‐g‐PNIPAM/silver nanocomposites. The resulting nanocomposites were soluble in water when the content of PPy was low, and when the molar ratio of Py/Py‐PNIPAM increased to 30, the resulting products became insoluble in water. The resulting nanocomposites had special optical properties because of PPy as well as the temperature‐responsible PNIPAM. The chemical structure and composition of nanocomposite were characterized by 1H nuclear magnetic resonance spectroscopy, gel permeation chromatograms, fourier transform infrared spectroscopy, and X‐ray diffraction. Their optical properties were characterized by UV–vis and fluorescence spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6950–6960, 2008  相似文献   

8.
纳米ZnO颗粒在阳极Al2 O3模板中的强光致发光研究   总被引:1,自引:0,他引:1  
用金属醇盐水解法在阳极Al2O3模板的有序孔洞中生长了纳米量级的ZnO颗粒,并用扫描电子显微镜(SEM)和高分辨电子显微镜(HRTEM)对其形貌进行观察.对纳米ZnO/多孔阳极Al2O3模板组装体的光致发光谱进行测量,将组装体中纳米ZnO颗粒的发光强度与常规方法制备的纳米ZnO颗粒发光强度做了比较,就发光强度提高的原因进行了讨论.  相似文献   

9.
The hydrophobic fumed silica suspensions physically pre-adsorbed poly(N-isopropylacrylamide) (PNIPAM) in water could prepare oil dispersed in water (O/W) Pickering emulsion by mixing of silicone oil. The resulting Pickering emulsions were characterized by the measurements of volume factions of emulsified silicone oil, adsorbed amounts of the silica suspensions, oil droplet size, and some rheological responses, such as stress-strain sweep curve and dynamic viscoelastic moduli as a function of the added amount of PNIPAM. Moreover, their characteristics were compared with those of the O/W Pickering emulsions prepared by the hydrophilic fumed silica suspensions pre-adsorbed PNIPAM. For the emulsions prepared by the hydrophobic silica suspensions, an increase in the added amount of PNIPAM led to (1) a decrease in the volume fraction of the emulsified oil in the emulsified phase, (2) both the size of oil droplets and the adsorbed amount of the corresponding silica suspensions being almost constant, except for the higher added amounts, and (3) both the storage modulus (G′) and the yield shear strain being constant. The term of 1 is the same for the emulsions prepared by the hydrophilic silica suspensions, whereas both the adsorbed amount of the corresponding silica suspension and the G′ value increase and both the droplet size and the yield shear strain decrease with an increase in the added amount of PNIPAM. The differences between the rheological properties of the emulsions prepared by the hydrophilic silica suspensions and those by the hydrophobic ones are attributed to the hydrophobic interactions of the flocculated silica particles in the Pickering emulsions.  相似文献   

10.
吕美丽  李国梁  李超  陈慧强  张颖 《化学学报》2011,69(20):2385-2392
通过无皂乳液聚合和种子乳液聚合两步法合成苯乙烯与N-异丙基丙烯酰胺共聚物/聚N-异丙基丙烯酰胺[P(St-NIPAM)/PNIPAM]核-壳结构复合微凝胶, 再以其为模板在硝酸银水溶液中充分溶胀, 并以乙醇为还原剂, 在NH3气氛条件下还原, 制备得到高分子微凝胶负载纳米银P(St-NIPAM)/PNIPAM-Ag的复合微凝胶材料. 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱仪(FT-IR)、X射线衍射仪(XRD)、热分析(TGA)、紫外-可见分光光度计(UV-vis)、激光粒度分析等手段对复合微凝胶进行结构、组成和性质表征. 研究结果表明, 复合纳米银后的P(St-NIPAM)/PNIPAM-Ag复合微凝胶仍具有温敏性, 且其温度敏感性随壳层中复合纳米银含量的增加而减弱. P(St-NIPAM)/PNIPAM-Ag复合微凝胶对对硝基苯酚的还原反应具有良好的催化活性, 在45 min内基本将对硝基苯酚催化还原为对氨基苯酚.  相似文献   

11.
Thermoresponsive colloidal microgels were prepared by polymerization of N‐isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N‐methylenebisacrylamide, in water with varying concentrations (<CMC) of an anionic surfactant, sodium dodecylsulphate (SDS). Volume phase transitions of the prepared microgels were studied in D2O by 1H NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of poly(N‐isopropylacrylamide) (PNIPAM) at temperature range 22–50 °C. In addition, microcalorimetry, turbidometry, dynamic light scattering, and electrophoretic mobility measurements were used to characterize the aqueous microgels. As expected, increasing SDS concentration in the polymerization batch decreased the hydrodynamic size of an aqueous microgel. Structures with high mobilities at temperatures above the LCST of PNIPAM were observed in the microgels prepared with small amount of SDS, as indicated by the relaxation times of different PNIPAM protons. It was concluded that the high mobility at high temperatures is in connection to a mobile surface layer with polyelectrolyte nature and with high local LCST. High SDS concentration in the synthesis was observed to prevent the formation of permanent, solid PNIPAM particles. The results from different characterization methods indicated that PNIPAM microgels prepared in high SDS concentrations appear to be more homogeneously structured than their correspondences prepared in low SDS concentration. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3305–3314, 2006  相似文献   

12.
Imine COF (covalent organic framework) based on the Schiff base reaction between p‐phenylenediamine (PDA) and benzene‐1,3,5‐tricarboxaldehyde (TCA) was prepared on the HOPG‐air (air=humid N2) interface and characterized using different probe microscopies. The role of the molar ratio of TCA and PDA has been explored, and smooth domains of imine COF up to a few μm are formed for a high TCA ratio (>2) compared to PDA. It is also observed that the microscopic roughness of imine COF is strongly influenced by the presence of water (in the reaction chamber) during the Schiff base reaction. The electronic property of imine COF obtained by tunneling spectroscopy and dispersion corrected density functional theory (DFT) calculation are comparable and show semiconducting nature with a band gap of ≈1.8 eV. Further, we show that the frontier orbitals are delocalized entirely over the framework of imine COF. The calculated cohesive energy shows that the stability of imine COF is comparable to that of graphene.  相似文献   

13.
The lower critical solution temperatures (LCSTs) for mass fractionated samples of poly(N‐isopropylacrylamide) (PNIPAM) were studied to determine the effect of polymer molecular weight on the LCST using a high throughput temperature gradient apparatus. PNIPAM fractions prepared by a conventional radical polymerization using azoisobutyronitrile (AIBN) as the initiator had LCSTs that were largely invariant with molecular weight or dispersity. Only slight deviations were noted with lower molecular weight samples. An 18‐kDa sample had a 0.6 °C higher LCST. A 56‐kDa sample had a 0.2 °C higher LCST. PNIPAM derivatives prepared with a triphenylmethyl (trityl) functionalized azo initiator were also prepared and mass fractionated. These samples' LCSTs were identical to those of PNIPAM samples prepared using AIBN initiation when higher molecular weight samples were compared. The trityl‐containing PNIPAM fractions' LCSTs varied when the molecular weight decreased below 100 kDa. Acidolysis of the trityl end groups provided a third set of PNIPAM derivatives whose LCST differed only with samples with Mw values < 60 kDa. These results show there is no effect of molecular weight on LCST until the degree of polymerization is such that end group structure becomes significant. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1492–1501, 2006  相似文献   

14.
A novel copolymer (PG‐PNIPAM) composed of polyglycerol (PG) as core and poly(N‐isopropylacrylamide) (PNIPAM) as arms was prepared by the radical addition‐fragmentation transfer polymerization (RAFT) of NIPAM in the presence of PG with multi‐trithiolcarbonate groups (PG‐TTC). The results showed that the RAFT polymerization was controllable and nearly all trithiolcarbonates groups on PG took part in the polymerization. The final PG‐PNIPAM copolymer showed a thermally dependent hydrophobic/hydrophilic transition around 28–30°C.  相似文献   

15.
Thermoresponsive colloidal particles were prepared by seeded precipitation polymerization of N-isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N-methylenebisacrylamide (MBA), using polystyrene latex particles (ca. 50 nm in diameter) as seeds in aqueous dispersion. Phase transitions of the prepared poly(N-isopropylacrylamide), PNIPAM, shells on polystyrene cores were studied in comparison to colloidal PNIPAM microgel particles, in H2O and/or in D2O by dynamic light scattering, microcalorimetry and by 1H NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of PNIPAM. As expected, the seed particles grew in hydrodynamic size during the crosslinking polymerization of NIPAM, and a larger NIPAM to seed mass ratio in the polymerization batch led to a larger increase of particle size indicating a product coated with a thicker PNIPAM shell. Broader microcalorimetric endotherms of dehydration were observed for crosslinked PNIPAM on the solid cores compared to the PNIPAM microgels and also an increase of the transition temperature was observed. The calorimetric results were complemented by the NMR spectroscopy data of the 1H-signal intensities upon heating in D2O, showing that the phase transition of crosslinked PNIPAM on polystyrene core shifts towards higher temperatures when compared to the microgels, and also that the temperature range of the transition is broader.  相似文献   

16.
采用间歇式、半间歇式和连续式无皂乳液聚合(SFEP)法合成温敏性聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶。连续式或半间歇式SFEP法合成的PNIPAM微凝胶相转变温度范围明显地比间歇式SFEP法合成的窄,其中又以连续式SFEP法的效果最明显。相同交联剂用量的情况下,连续式SFEP法合成的PNIPAM微凝胶的粒径和溶胀比最大,而间歇式SFEP法合成的最小。通过研究微凝胶合成过程中溶胀比随反应时间的变化关系,证明了连续式或半间歇式SFEP法合成的PNIPAM微凝胶具有比较均匀的内部交联结构。  相似文献   

17.
采用超声膜扩散(Ultrasound-assisted reaction method, UAMR)的方法, 以NaBH4还原溶液中的银离子, 在聚乙烯吡咯烷酮(PVP)为稳定剂的条件下, 制备出了平均粒度为4.7 nm的银纳米粒子. 与超声滴加法(Ultrasound-assisted dropping reaction method, UADR)相比, 超声膜扩散法制备出来的银纳米粒子的粒径小, 且尺寸分布较窄.  相似文献   

18.
Aminopropylisobutyl polyhedral oligomeric silsesquioxane (POSS) was used to prepare a POSS‐containing reversible addition‐fragmentation transfer (RAFT) agent. The POSS‐containing RAFT agent was used in the RAFT polymerization of N‐isopropylacrylamide (NIPAM) to produce tadpole‐shaped organic/inorganic hybrid Poly(N‐isopropylacrylamide) (PNIPAM). The results show that the POSS‐containing RAFT agent was an effective chain transfer agent in the RAFT polymerization of NIPAM, and the polymerization kinetics were found to be pseudo‐first‐order behavior. The thermal properties of the organic/inorganic hybrid PNIPAM were also characterized by differential scanning calorimetry. The glass transition temperature (Tg) of the tadpole‐shaped inorganic/organic hybrid PNIPAM was enhanced by POSS molecule. The self‐assembly behavior of the tadpole‐shaped inorganic/organic hybrid PNIPAM was investigated by atomic force microscopy and dynamic light scattering. The results show the core‐shell nanostructured micelles with a uniform diameter. The diameter of the micelle increases with the molecular weight of the hybrid PNIPAM. Surprisingly, the micelle of the tadpole‐shaped inorganic/organic hybrid PNIPAM with low molecular weight has a much bigger and more compact core than that with high molecular weight. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7049–7061, 2008  相似文献   

19.
Amphiphilic ABC miktoarm star terpolymers consisting of polystyrene, poly(ε‐caprolactone), and poly(N‐isopropylacrylamide) arms, PS(‐b‐PNIPAM)‐b‐PCL, were synthesized via a combination of atom transfer radical polymerization, ring‐opening polymerization (ROP), and click chemistry. Difunctional PS bearing an alkynyl and a primary hydroxyl moiety at the chain end, PS‐alknylOH, was prepared by reacting azido‐terminated PS with an excess of 3,5‐bis(propargyloxy)benzyl alcohol (BPBA) under click conditions. The subsequent ROP of ε‐caprolactone using PS‐alknylOH macroinitiator afforded PS(‐alkynyl)‐b‐PCL copolymer bearing an alkynyl moiety at the diblock junction point. Target PS(‐b‐PNIPAM)‐b‐PCL amphiphilic ABC miktoarm star terpolymers were then prepared via click reaction between PS(‐alkynyl)‐b‐PCL and an excess of azido‐terminated PNIPAM (PNIPAM‐N3). The removal of excess PNIPAM‐N3 was accomplished by “clicking” onto alkynyl‐functionalized Wang resin. All the intermediate and final products were characterized by gel permeation chromatography, 1H NMR, and FTIR. In aqueous solution, the obtained amphiphilic ABC miktoarm star terpolymer self‐assembles into micelles possessing mixed PS/PCL cores and thermoresponsive shells, which were further characterized by dynamic laser light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1636–1650, 2009  相似文献   

20.
将热致性乙炔基封端液晶单体(MPBE)与含硅芳炔树脂(PSA)进行共聚,制得乙炔基封端液晶改性含硅芳炔树脂(PSA-MPBE)。采用FT-IR在线表征了PSA-MPBE树脂固化过程的结构变化,用裂解-气相色谱-质谱联用仪(Py-GC-MS)分析了其高温裂解产物,研究了其固化机理,用偏光显微镜(POM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析了共混树脂的相结构、断裂形貌和微观结构。结果表明:MPBE与PSA发生了共聚反应,使介晶域固定在交联网络中,形成结构均匀的以介晶相为小岛的海岛结构,PSA-MPBE树脂的断裂行为从典型的脆性断裂转变为微塑性断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号