首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Surface treatment of titanium (Ti) surface has been extensively studied to improve its properties for biomedical applications, including hydrophilicity, corrosion resistance, and tissue integration. In this present work, we present the effects of thermal oxidation as surface modification method on metallic titanium (Ti). The Ti foils were oxidized at 300°C, 400°C, 500°C, and 600°C under air atmosphere for 3 hours, which formed oxide layer on Ti surface. The physicochemical properties including surface chemistry, roughness, and thickness of the oxide layer were evaluated in order to investigate how these factors affected surface hydrophilicity, microhardness, and corrosion resistance properties of the Ti surface. The results revealed that surfaces of all oxidized samples were modified by formation of titanium dioxide layer, of which morphology, phase, and thickness were changed according to the oxidized temperatures. Increasing oxidation temperature led to the formation of thicker oxide layer and phase transformation of anatase to rutile. The presence of the oxide layer helped the improvement of corrosion resistance and microhardness. The most improvement in surface roughness was found in the specimens treated at 400°C, which significantly improved surface hydrophilicity. But both surface roughness and hydrophilicity reduced when oxidized at 500°C and 600°C, suggesting that hydrophilicity was dominated by the surface roughness. In addition, this surface treatment did not reduce the biocompatibility of the metallic Ti substrates against murine osteoblasts (MC3T3).  相似文献   

2.
Metallic glass ribbons of the chemical composition (Fe,Cr)80(P,C,Si)20 have been thermally treated in the region between 530 and 980°C for 72 h. The SEM/EDXA investigations indicate that a phase transformation takes place between 575 and 980°C in a surface layer of 5 μm thickness. Thus, a Cr-rich phase occurs between 760 and 800°C which is converted into an open-pore system between 850 and 900°C. The oxidation process reaches its maximum at 760°C. The ESCA spectra of the material in the “as received” state and of the thermally treated samples indicate that different oxygen species are formed within the analysed surface layer of 10 nm. The oxygen of the original material is incorporated as hydroxyl groups in species such as FeO(OH) and CrO(OH). After thermal treating the hydroxyl content decreases and the oxide content increases. Species of Si exist in the surface layer as SiOx-like compounds (peak at BE=102.0 eV). A majority phase of transition metal phosphide species is coexisting with oxidised phosphate species.  相似文献   

3.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) coatings on the corrosion inhibition of stainless steel in an NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. P3OT films were deposited by drop-casting technique onto 304 stainless steel electrode (304SS). 304SS coated with P3OT films were thermally annealed during 30 h at different temperatures (55°C, 80°C, and 100°C). The corrosion resistance of stainless steel coated with P3OT in 0.5 M NaCl aqueous solution at room temperature was investigated by using potentiodynamic polarization curves, linear polarization resistance, and electrochemical impedance spectroscopy. The results indicated that the thermal treatment at 80°C and 100°C of P3OT films improved the corrosion resistance of the stainless steel in NaCl solution; the speed of corrosion diminished in an order of magnitude with regard to the 304SS. In order to study the temperature effect in the morphology of the coatings before and after the corrosive environment and correlate it with corrosion protection, atomic force microscopy and scanning electron microscopy were used. Morphological study showed that when the films are heated, the grain size increased and a denser surface was obtained, which benefited the barrier properties of the film.  相似文献   

4.
Polysilsesquioxanes were prepared through the acid‐catalyzed hydrolytic polycondensation of triethoxy(methyl)silane, triisopropoxy(methyl)silane, or triisobutoxy(methyl)silane and subjected to dip coating to form coating films. The film formation depended on the polarity and crystallinity of the substrate, and a correlation was found between the substrate and polysilsesquioxane solubility parameters. When the coating film was heated, thermal condensation occurred at about 500 °C between hydroxy groups or between hydroxy and alkoxy groups. The methyl group attached to silicon decomposed, and siloxane bonding formed at about 800 °C. The adhesion and hardness of the coating films were evaluated with the Japanese Industrial Standard K5400 protocol, and they increased with increases in the heating time and heat‐treatment temperature. The refractive index of the coating films decreased when the heat‐treatment temperature was increased to 500 °C because of the combustion of organic groups. In contrast, the surface electric resistance increased with the heat‐treatment temperature up to 500 °C. The dielectric constant was 2.6–2.8 and decreased with an increases in the molecular weight and the degree of crosslinking of the polysilsesquioxanes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3676–3684, 2004  相似文献   

5.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) and polystyrene (PS) blend coatings on the corrosion inhibition of stainless steel in a 0.5 M NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. Stainless steel electrodes with mirror finish were coated with P3OT/PS blend by drop-casting technique. In order to study the temperature effect on the function like physical barrier against the corrosive species of P3OT/PS polymeric blend, the coatings were thermally annealed at three different temperatures (55?°C, 80?°C, and 100?°C). The corrosion behavior of P3OT/PS-coated stainless steel was investigated in 0.5 M NaCl at room temperature, by using potentiodynamic polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy. The LPR values indicated that, at 100?°C, P3OT/PS coatings showed a better protection of the 304 stainless steel in 0.5 M NaCl; the corrosion rate diminished in two orders of magnitude with regard to the bare stainless steel. The superficial morphology of the coatings before and after the corrosive environment was researched by atomic force microscopy, optic microscopy, and scanning electronic microscopy. Morphological study showed that the increased temperature benefited the integration of the two polymeric phases, which improved the barrier properties of the coatings. The coating/metal adhesion and the coating thickness were evaluated. The temperature increases the adhesion degree coating/substrate; thus, the coating annealed at 100?°C showed the best adhesion.  相似文献   

6.
A superhydrophobic coating applied in corrosion protection was successfully fabricated on the surface of aluminum alloy by chemical etching and surface modification. The water contact angle on the surface was measured to be 161.2° ± 1.7° with sliding angle smaller than 8°, and the superhydrophobic coating showed a long service life. The surface structure and composition were then characterized by means of SEM and XPS. The electrochemical measurements showed that the superhydrophobic coating significantly improved the corrosion resistance of aluminum alloy. The superhydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and it was found that only about 6% of the water surface is in contact with the metal substrate and 94% is in contact with the air cushion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 μm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 °C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 °C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 μm thick are porous and constitute the active anodic material.  相似文献   

8.
In this study, titanium surface modification by a thermal treatment using a polydimethylsiloxane (PDMS) coating was investigated. The surfaces of four titanium samples were surface treated by polishing, sandblasting, and coating with a PDMS with a thermal treatment at 800 and 1100 °C. The titanium surfaces were characterized by X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy. The effect of the surface treatments on adhesion of resin to titanium was assessed by shear adhesion strength test. XPS analysis showed that there was a change of elemental composition of titanium surfaces after surface treatment. Binding energy shifts for Si2p and O1s were observed after sandblasting and thermally treated PDMS. Therefore, chemical states of Si and O were changed. Atomic force microscopy analysis revealed that the surface topography of the Ti samples was different, and surface roughness was increased after sandblasting and thermal treatment of PDMS coating. Shear adhesion strength test results showed that the adhesion between resin and titanium is affected by the treatment temperature of PDMS coating. The highest adhesion is obtained at 1100 °C (14.7 ± 1.57 MPa). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
As an optimum shell material, AZ80 magnesium alloys are widely applied in the 3C (computers, communications and consumer electronics) industries. The case of 3C products corroded by a sweaty hand has been simulated and the corrosion characters have been investigated by ellipsometric technology. Thickness variation of corrosive medium film on a Mg alloy surface was monitored. Surface structure of a corrosion layer was described with a three‐layer optical model (substrate—EMA—Cauchy) and thickness of each layer for different soaking time was obtained by fitting experimental data with the model. The corrosion product films with a refractive index of 1.45–1.62, loose corrosion product layer, can only provide limited protection to the substrate when a Mg alloy surface is corroded by sweat again. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A layer of Al coatings was prepared on the S355 steel by arc spraying, which was conducted by anodic oxidation treatment; the morphologies, chemical element compositions and phases of Al coating, and anodic oxide layer were analyzed with field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS) and X‐ray diffraction (XRD), respectively. The corrosion protections of Al coating before and after anodic oxidation were discussed with a seawater immersion test; the corrosion resistance mechanisms of Al coating and anodic oxide layer in the seawater were also investigated. The results show that the thickness of Al coating is about 300 µm by arc spraying, the sample surfaces become loose after seawater immersion corrosion and Cl? and O2? penetrate into the substrate from the cracks, destroying the binding properties of coating–substrate, and the coating fails. After anodic oxidation, the oxide layer is formed in the surface of Al coating with the thickness of about 30 µm; the corrosion products are mainly composed of Al(OH)3, which barraged the holes caused by seawater corrosion. The corrosion cracks are formed during the corrosion, while the number and depth of cracks decrease obviously after anodic oxidation treatment. The corrosion of Al coating becomes the local corrosion after anodic oxidation treatment, and the grains are smaller, which are easily nucleated to form a new corrosion resistance layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
十八烷基胺在铁上成膜结构和耐腐蚀性研究   总被引:4,自引:0,他引:4  
十八烷基胺(ODA)应用于热力设备停用保护技术在国外开发较早[1-3],国内电厂这二年来应用该技术也日益增多,但由于基础研究做得较少,使用效果受到影响.1996年以来我们对ODA的成膜条件和机理进行了一些研究[4-6],本文利用交流阻抗、俄歇电子能谱、红外镜反射光谱、光电化学等方法对ODA的成膜结构和耐蚀性进行探讨,同时介绍ODA在电厂的应用情况.1实验实验材料为DT-4型纯铁.样品制备及交流阻抗测试见文献[4-6].  俄歇能谱(AES)Perkin-ElmerPHI550ESCA/SAM.实验在机械工业部上海材料研究所进行.  红外镜反射(SR)Bio-R…  相似文献   

12.
The functionality of porous isotactic (it) poly(methyl methacrylate) (PMMA) thin films, which were previously developed by the selective extraction of syndiotactic (st) poly(methacrylic acid) (PMAA) from the it‐PMMA/st‐PMAA stereocomplex thin film on a substrate using the layer‐by‐layer assembly method was investigated after thermal treatment (70, 80, and 90 °C) in water for 4 h. Quartz crystal microbalance analysis and infrared spectra measurements revealed that the st‐PMAA incorporation ability of the porous it‐PMMA thin film decreased in order at 80 and 90 °C, while there was no decrease observed at 70 °C. X‐ray diffraction analysis also supported the thermal stability of the porosity at 70 °C, whereas two it‐PMMA crystalline peaks (2θ = 9° and 14°) were generated during heating at 90 °C. The loss of the functionality of the it‐PMMA thin film was thus shown to be due to crystallization, which was caused by the increase in polymer‐chain mobility during the heating process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3265–3270, 2010  相似文献   

13.
In the present work, lanthanum phenylphosphonate (LaPP)–based multilayered film was fabricated on the surface of flexible polyurethane (PU) foam by layer‐by‐layer self‐assembled method. The successful deposition of the coating was confirmed by scanning electron microscopy (SEM) and energy‐dispersive X‐ray (EDX). Subsequently, the thermal decomposition and burning behavior of untreated and treated PU foams were investigated by thermogravimetric analysis (TGA) and cone calorimeter, respectively. The TGA results indicated that Tmax2 of treated PU foams were increased by approximately 15°C to 20°C as compared with untreated PU foam. The peak heat release rate (PHRR) and total heat release (THR) of PU‐6 (with 19.5 wt% weight gain) were 188 kW/m2 and 20.3 MJ/m2, with reductions of 70% and 15% as compared with those of untreated PU foam, respectively. Meanwhile, the smoke production of treated PU foam was suppressed after the construction of LaPP‐based coating.  相似文献   

14.
Porous titania film is prepared by alkali treatment of NiTi alloy followed by soaking treatment in HCl solution. The benefit of this porous titania film as an interlayer to improve adhesion and integrity of the sol–gel titania coating on NiTi alloy substrate is evidenced by surface morphological observations. X-ray diffraction analyses indicate the formation of Ni4Ti3 phase in the matrix during heat treatment of the NiTi samples. X-ray photoelectron spectroscopy results indicate that the titania coating with two dip-coating layers has completely covered the NaOH–HCl treated NiTi substrate, and potentiodynamic polarization tests show that this titania coating provides good protection for the treated NiTi substrate in 0.9% NaCl solution. Ultraviolet illumination can increase surface hydrophilicity of the NiTi samples by reducing contact angles from 60–80° to 20–10°.  相似文献   

15.
Al‐enriched surface layers containing a Mg17Al12 intermetallic phase and a solid solution of Al in Mg were fabricated by heating Mg specimens in contact with Al powder in a vacuum furnace. The layer formation process proceeded through partial melting at the Mg‐substrate/Al‐powder interface. The test results suggest that a good contact between the Al powder and the Mg substrate is required during heat treatment. In this study, a pressure of 1 MPa was applied to improve the contact of the Al powder with the Mg specimen. When the powder was pressed down during heating, it was possible to reduce the process temperature from 450 °C to 440 °C. The layers produced at 440 °C in a short heating time (40 min) were thick, continuous and uniform. The microhardness of the Al‐enriched layers was much higher than that of the Mg substrate. The results of the electrochemical corrosion tests indicated that the Mg specimens with an Al‐enriched surface layer had better corrosion resistance than the bare Mg. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The substitution of fossil based packaging materials with materials from renewable sources is a topic of current interest. Polyhedral oligomeric silsesquioxanes with fatty acid moieties can have a renewable content of more than 90 % and are therefore called bio-POSS. In this study the bio-POSS octa-(ethyl erucamide) silsesquioxane was coated on a paperboard substrate as a liquid coating. The water resistance and the water vapour barrier properties of the paperboard were improved. Samples on which the bio-POSS coating layer was dried at 80 °C had a slightly higher water resistance and water vapour barrier than samples dried at room temperature. UV treatment of the coating layer had little effect. Solid state 1H-NMR of UV treated coatings showed no reaction of double bonds of bio-POSS in the coating layer. Multiple coating considerably enhanced the water resistance and water vapour barrier properties of the paperboard, due to an increase in the coating thickness and a reduction in number of pores on top coated surfaces.  相似文献   

17.
Phase transition of the layer structure of poly(p-benzenedithiol-co-p-diethylbenzene) obtained in solid state polymerization was studied by a thermal treatment or UV irradiation under a nitrogen atmosphere. The peak intensities in the X-ray diffraction diagram of polymers gradually decreased with the thermal treatment time above 55°C. Below 50°C the layer structure of polymers hardly changed. The apparent activation energy for the phase transition was about 15 Kcal/mol [63 KJ/mol] at the initial stage and gradually decreased to a few Kcal/mol [ca. 2 KJ/mol]. UV light from a high-pressure mercury lamp also gradually induced the phase transition from the layer structure to an amorphous one. The pristine polymer possesses phase transition points at 75, 95 and 130°C. The exothermic transition at 75°C can be understood as the thermal destruction of the semistable layer structure. The exothermic transition at 95°C may be correspond to the cis → trans thermal isomerization of the C?°C bond in the polymer main chain. The diffuse reflectance spectrum of the pristine polymer differed from that of the amorphous polymer obtained by the thermal treatment of the pristine polymer. SEM photographs of the pristine polymer showed a particular surface structure, i.e. entangled fibrous material. TEM photographs of the pristine polymer exhibited a bright valley-and-hill structure, whereas that of the amorphous polymer obtained by thermal treatment exhibited a plain surface.  相似文献   

18.
In austenitic stainless steel nitrogen stabilizes the austenitic phase, improves the mechanical properties and increases the corrosion resistance. Nitrogen alloying enables to produce austenitic steels without the element nickel which is high priced and classified as allergy inducing. A novel production route is nitrogen alloying of CrMn‐prealloyed steel powder via the gas phase. This is beneficial as the nitrogen content can be adjusted above the amount that is reached during conventional casting. A problem which has to be overcome is the oxide layer present on the powder surface which impedes both the sintering process and the uptake of nitrogen. This study focuses on whether heat treatment under pure nitrogen is an appropriate procedure to enable sintering and nitrogen uptake by reduction of surface oxides. X‐ray photoelectron spectroscopy (XPS) in combination with scanning electron microscopy (SEM) and energy dispersive X‐ray spectrometry (EDS) are used to investigate the surface of powdered FeMn19Cr17C0.4N heat treated under nitrogen atmosphere. The analyses showed reduction of iron oxides already at 500 °C leading to oxide‐free metallic surface zones. Mn and Cr oxides are reduced at higher temperatures. Distinct nitrogen uptake was registered, and successful subsequent sintering was reached. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Carbonyl iron powder was coated with phosphate layer using phosphating precipitation method. The phosphated powder was dried at 60 °C for 2 h in air and heat treated by calcination at 400 and 800 °C for 3 h in air. Cylindrical specimens density of ~6.5 g.cm?3 based on iron phosphated powder calcined at 400 °C were sintered at 820, 900, 1110 °C in N2 + 10%H2 atmosphere and 1240 °C in vacuum for 30 min. The morphology and phase composition of the phosphate coating and sintered compacts were studied by scanning electron microscopy, atomic force microscopy (AFM) and X‐ray diffraction (XRD) analysis. Gelatinous morphology of dried phosphate coating (thickness of ~100 nm) containing nanoparticles of iron oxyhydroxides and hydrated iron phosphate was observed. From XRD, diffractogram indicated the presence of goethite α‐FeOOH, lepidocrocite γ‐FeOOH and ludlamite Fe3(PO4)2.4H2O. The calcined phosphate coating (thickness of ~ 400 nm) contained non‐homogeneous consistency of α‐Fe2O3 layer on iron particles, an inter‐layer of amorphous FePO4 and Fe3O4 top layer. The transformation to crystalline FePO4 structure occurred during calcination at 800 °C with the presence of α‐Fe2O3 forming a light top zone (rough morphology). The microstructure of compacts sintered in solid state at temperatures up to 900 °C has retained composite network character. A fundamental change in microstructure due to the liquid phase sintering occurred after sintering at temperatures of 1100 and 1240 °C. It was confirmed that the microstructure complex consists of spheroidized α‐Fe and α‐Fe2O3 phases surrounded by solidified liquid phase consisting various phosphate compounds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
To improve the initial corrosion resistance and then make the degradation rate of magnesium alloys to meet the biomedical application, crack-free CaO–P2O5–SrO–Na2O bioglass-ceramic coatings were synthesized on AZ31 magnesium alloy substrates using a sol–gel dip-coating technique followed by a heat-treatment in the temperature range of 400–500 °C. The effects of heat-treatment on the phase constituents, surface characteristics and corrosion resistances of the coatings were investigated. It was shown that the crystallization of Ca2P2O7 occurred after the glass was treated at 400 °C. As the temperature increased from 400 °C to 450 °C, besides main phase Ca2P2O7, β-Ca(PO3)2 and Ca4P6O19 were identified as minor crystal phases in the glass–ceramic. No new phase was detected with the temperature increasing to 500 °C except for the further crystallization. Meanwhile, the water contact angles of the coatings decreased with the increase of heat-treatment temperature due to the great crystallization. The corrosion resistances of the coated magnesium alloys were studied by electrochemical corrosion techniques in the simulated body fluid. The results revealed that the coating heat-treated at 400 °C exhibited superior corrosion resistance because of less crystallization, suggesting that the calcium phosphate bioglass–ceramic coating can provide effective protection for magnesium alloy substrate to control its initial degradation in vivo and maintain the desired mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号