首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Bond-order potentials provide a powerful class of models for simulating chemically reactive systems with classical potentials. In these models, the covalent bonding interactions adapt to the environment, allowing bond strength to change in response to local chemical changes. However, the non-bonded interactions should also adapt in response to chemical changes, an effect which is neglected in current bond-order potentials. Here the AIREBO potential is extended to include adaptive Lennard-Jones terms, allowing the van der Waals interactions to vary adaptively with the chemical environment. The resulting potential energy surface and its gradient remain continuous, allowing it to be used for dynamics simulations. This new potential is parameterized for hydrocarbons, and is fit to the energetics and densities of a variety of condensed phase molecular hydrocarbons. The resulting model is more accurate for modeling aromatic and other unsaturated hydrocarbon species, for which the original AIREBO potential had some deficiencies. Testing on compounds not used in the fitting procedure shows that the new model performs substantially better in predicting heats of vaporization and pressures (or densities) of condensed-phase molecular hydrocarbons.  相似文献   

2.
In this work, we aim to investigate the contribution of van der Waals (vdW) interactions to the stability of polypeptides in helical conformations studying infinitely long chains of alanine and glycine with density functional theory. To account for vdW interactions, we have used the interatomic pairwise dispersion approach proposed by Tkatchenko–Scheffler (TS), the TS approach with self‐consistent screening (SCS) that self‐consistently includes long‐range electrostatic effects (TS + SCS), the D2 and D3 methods of Grimme et al., and the Langreth–Lundqvist procedure that treats nonlocally the correlation part of the approximation to the exchange‐correlation (xc) functional (called DF). First, we have tested the performance of these strategies studying a set of representative hydrogen bonded dimers. Next, we have studied polyalanine and polyglicine in π‐helix, α‐helix, ‐helix, 27, and polyproline‐II conformations and in a fully extended structure. We have found that the DF methodology in combination with a modified version for the Becke approximation to the exchange (optB86b), the D2, D3, TS, and TS + SCS strategies in combination with the Perdew–Burke–Ernzerhof approximation to the xc functional, describe fairly well dimer association energies. Furthermore, the DF method and the D2, D3, TS, and TS + SCS strategies predict very similar helical stabilities even though the approximation used in DF for describing the long‐range dispersion interactions is different that the one used in D2/D3 and TS/TS + SCS. We found that the stability doubles for π and α helices if vdW interactions are taken into account. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The thermodynamic properties, enthalpy of vaporization, entropy, Helmholtz function, Gibbs function, but especially the heat capacity at constant volume of a van der Waals gas (and liquid) at the phase transition are examined in two different limit approximations. The first limit approximation is at the near-critical temperatures, i.e., for T/T c → 1, where T c is the critical temperature, the other limit approximation is at the near-zero temperatures, T→ 0. In these limits, the analytical equations for liquid and gas concentrations at saturated conditions were obtained. Although the heat capacities at constant volume of a van der Waals gas and liquid do not depend on the volume, they have different values and their change during the phase transition was calculated. It should be noticed that for real substances the equations obtained at the near-zero temperature are only valid for T > T triple point and TT c , which means that found equations can be used only for substances with T triple pointT c .  相似文献   

4.
Van der Waals magnetic materials are promising candidates for spintronics and testbeds for exotic magnetic phenomena in low dimensions. The two-dimensional (2D) limit in these materials is typically reached by mechanically breaking the van der Waals interactions between layers. Alternative approaches to producing large amounts of flakes rely on wet methods such as liquid-phase exfoliation (LPE). Here, we report an optimized route for obtaining monolayers of magnetic cylindrite by LPE. We show that the selection of exfoliation times is the determining factor in producing a statistically significant amount of monolayers while keeping relatively big flake areas (~1 µm2). We show that the cylindrite lattice is preserved in the flakes after LPE. To study the electron transport properties, we have fabricated field-effect transistors based on LPE cylindrite. Flakes are deterministically positioned between nanoscale electrodes by dielectrophoresis. We show that dielectrophoresis can selectively move the larger flakes into the devices. Cylindrite nanoscale flakes present a p-doped semiconducting behaviour, in agreement with the mechanically exfoliated counterparts. Alternating current (AC) admittance spectroscopy sheds light on the role played by potential barriers between different flakes in terms of electron transport properties. The present large-scale exfoliation and device fabrication strategy can be extrapolated to other families of magnetic materials.  相似文献   

5.
We report here a study of the influence of a physical parameter (i.e. the ionization energy of different donor aromatic molecules) on the spectroscopic and dynamic properties of a series of molecular complexes A-D (A acceptor, D donor) where A is the anthracene molecule and D is one of the following dialkylanilines: dimethyl, diethyl, dipropyl or dibutyl. All complexes exhibit the same spectroscopic behavior already observed for dimethylaniline and diethylaniline cases and tentatively explained by the existence of two isomeric forms for each complex. Decay times and the broad band maximum frequency shifts for the exciplex-like emission type are experiencing a continuous variation in agreement with the change of the ionization energy of the donors. This is confirmed by calculations done using a very simple model based on the interactions between the diabatic A*D and AD+ states of the complexes. This agreement is in favor of the initial assumption, that most physical parameters (complexation geometry, coupling between the diabatic states) are only weakly perturbed when changing the donor molecule and this despite an expected increased steric hindrance.  相似文献   

6.
The rotational spectrum of the pentafluoropyridine-Ne complex, generated in a supersonic jet, has been investigated using chirped-pulse microwave Fourier transform spectroscopy in the 2–8 GHz range. The spectra of the 20Ne and 22Ne species have been observed, and the rotational constants have been used to determine the structure of the complex. This structure, and those of the previously experimentally studied complexes benzene-Ne and pyridine-Ne, are an excellent benchmark for the theoretical calculations on these adducts. These complexes and hexafluorobenzene-Ne have been investigated at the CCSD/6-311++G(2d,p) level. The calculations reproduce the experimental structures well and show how the van der Waals complexes are stronger for the perfluorinated compound.  相似文献   

7.
The direct Z-scheme system constructed by two-dimensional (2D) materials is an efficient route for hydrogen production from photocatalytic water splitting. In the present work, the 2D van der Waals (vdW) heterojunctions of MoSe2/SnS2, MoSe2/SnSe2, MoSe2/CrS2, MoTe2/SnS2, MoTe2/SnSe2, and MoTe2/CrS2 are proposed to be promising candidates for direct Z-scheme photocatalysts and verified by first principles calculations. Perpendicular electric field is induced in these 2D vdW heterojunctions, which enhances the efficiency of solar energy utilization. Replacing MoSe2 with MoTe2 not only facilitates the interlayer carrier migration, but also improves the optical absorption properties for these heterojunctions. Excitingly, the 2D vdW MoTe2/CrS2 heterojunction is demonstrated, for the first time, to be 2D near-infrared-light driven photocatalyst for direct Z-scheme water splitting. © 2018 Wiley Periodicals, Inc.  相似文献   

8.
We present a new local meta-GGA exchange-correlation density functional by combining the TPSS meta-GGA exchange and the τ1 meta-GGA correlation functionals. The TPSS meta-GGA exchange-correlation and the τ1 meta-GGA correlation functionals have been implemented in the deMon code. The parameters in the τ1 meta-GGA correlation model are reoptimized in a synchronized way to match the original TPSS meta-GGA exchange counterpart. This reparametrized meta-GGA functional is referred to as “TPSSτ3”. The TPSSτ3 and TPSSτ1 meta-GGAs are validated using a test set that consists of covalent molecules, hydrogen-bonded complexes, and van der Waals interactions. The calculated results from TPSSτ1 and TPSSτ3 are analyzed and compared with reliable experimental data and theoretical data, as well as with those from Bmτ1 and TPSS calculations. The τ1 correlation model describes the aromatic compounds better than TPSS. TPSSτ3 yields satisfactory results for the covalent molecules, the hydrogen-bonded complexes, and the van der Waals complexes in the test set compared with TPSS, Bmτ1 and TPSSτ1. Contribution to the Serafin Fraga Memorial Issue.  相似文献   

9.
Local correlation methods rely on the assumption that electron correlation is nearsighted. In this work, we develop a method to alleviate this assumption. This new method is demonstrated by calculating the random phase approximation (RPA) correlation energies in several one-dimensional model systems. In this new method, the first step is to approximately decompose the RPA correlation energy to the nearsighted and farsighted components based on the wavelength decomposition of electron correlation developed by Langreth and Perdew. The short-wavelength (SW) component of the RPA correlation energy is then considered to be nearsighted, and the long-wavelength (LW) component of the RPA correlation energy is considered to be farsighted. The SW RPA correlation energy is calculated using a recently developed local correlation method: the embedded cluster density approximation (ECDA). The LW RPA correlation energy is calculated globally based on the system's Kohn-Sham orbitals. This new method is termed λ-ECDA, where λ indicates the wavelength decomposition. The performance of λ-ECDA is examined on a one-dimensional model system: a H24 chain, in which the RPA correlation energy is highly nonlocal. In this model system, a softened Coulomb interaction is used to describe the electron-electron and electron-ion interactions, and slightly stronger nuclear charges (1.2e ) are assigned to the pseudo-H atoms. Bond stretching energies, RPA correlation potentials, and Kohn-Sham eigenvalues predicted by λ-ECDA are in good agreement with the benchmarks when the clusters are made reasonably large. We find that the LW RPA correlation energy is critical for obtaining accurate prediction of the RPA correlation potential, even though the LW RPA correlation energy contributes to only a few percent of the total RPA correlation energy.  相似文献   

10.
We propose a physical interpretation of the so-called van der Waals equation of state for rubbers, which gives a relation between the force and the deformation. On a phenomenological basis this equation takes the finite extensibility and a non-defined interaction into account. Here the fininte extensibility is discussed for the dilute case (no entanglements) and the highly entangled limit. The intramolecular interactions are described by orientational effects. The resulting equation of state for the force shows the same features as the van der Waals equation.Dedicated to Prof. H.-G. Kilian on the occasion of his 60th birthday.  相似文献   

11.
Development of anti-biofouling coating has attracted immense attention for reducing the massively detrimental effects of biofouling in systems ranging from ship hulls and surgical instruments to catheters, implants, and stents. In this paper, we propose a model to quantify the role of electrostatic and van der Waals (vdW) forces in dictating the efficacy of dielectric coating for preventing the nonspecific adhesion mediated biofouling in salty systems. The model considers a generic charged lipid-bilayer encapsulated vesicle-like structure representing the bio-organism. Also, we consider the fouling caused by the nonspecific adhesion of the bio-organism on the substrate, without accounting for the explicit structures (e.g., pili, appendages) or conditions (e.g., surface adhesins secreted by the organisms) involved in the adhesion of specific microorganism. The model is tested by considering the properties of actual coating materials and biofouling causing microorganisms (bacteria, fungi, algae). Results show that while the electrostatic-vdW effect can be significant in anti-biofouling action for cases where the salt concentration is relatively low (e.g., saline solution for surgical instruments), it might not be effective for marine environment where the salt concentration is much higher. The findings, therefore, point to a hitherto unexplored driving mechanism of anti-biofouling action of the coating. Such an identification will also enable the appropriate choices of the coating materials (e.g., possible dielectric material with volume charge) and other system parameters (e.g., salinity of the solution for storing the surgical instruments) that will significantly improve the efficiency of the coatings in preventing the nonspecific adhesion mediated biofouling.  相似文献   

12.
The potential energy curves and spectroscopic constants of the ground and many excited states of the FrAr van der Waals system have been determined using a one‐electron pseudopotential approach. The Fr+ core and the electron–Ar interactions are replaced by effective potentials. The Fr+Ar core–core interaction is incorporated using the accurate CCSD(T) potential of Hickling et al. (Phys. Chem. Chem. Phys. 2004, 6, 4233). This approach reduces the number of active electrons of the FrAr van der Waals system to only one valence electron, which permits the use of very large basis sets for the Fr and Ar atoms. Using this technique, the potential energy curves of the ground and many excited states are calculated at the self consistent field (SCF) level. In addition, the spin–orbit interaction is also considered using the semiempirical scheme for the states dissociating into Fr (7p) and Fr (8p). The FrAr system is not studied previously and its potential interactions, spectroscopic constants and dipole functions are presented here for the first time. Furthermore, we have predicted the X2Σ+A2Π1/2, X2Σ+AΠ3/2, X2Σ+B2Σ1/2+, X2Σ+–32Π1/2, X2Σ+–32Π3/2, and X2Σ+–52Σ1/2+ absorption spectra. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
Summary Various properties of post-adiabatic representations of multichannel Schrödinger equations are described in the general context of adiabatic and classical path approximations as used in atomic and molecular physics. The van der Waals interactions of fluorine, chlorine, and oxygen atoms with rare gases, hydrogen, methane, and hydrogen halides are considered: it is found that in some of these systems, the first-order post-adiabatic scheme exhibits a smaller coupling than the adiabatic representation, thus providing an appropriate choice of the basis functions for a decoupling approximation.  相似文献   

15.
The excitation LIF spectra of van der Waals complexes of o- and p-methylaniline and CF3Cl, CF3H, CH4 and CF4 in a supersonic free jet are reported. The spectra show a resolved structure characteristic due to the internal rotational transitions of the methyl group. The equilibrium geometries in the ground state of the complexes have been calculated at MP2/6-31+G level of calculation and the intermolecular interaction have been discussed.  相似文献   

16.
Numerical atom‐centered basis sets (orbitals) (NAO) are known for their compactness and rapid convergence in the Hartree–Fock and density‐functional theory (DFT) molecular electronic‐structure calculations. To date, not much is known about the performance of the numerical sets against the well‐studied Gaussian‐type bases in correlated calculations. In this study, one instance of NAO [Blum et al., The Fritz Haber Institute ab initio Molecular Simulations Package (FHI‐aims), 2009] was thoroughly examined in comparison to the correlation‐consistent basis sets in the ground‐state correlated calculations on the hydrogen‐bonded water and dispersion‐dominated methane dimers. It was shown that these NAO demonstrate improved, comparing to the unaugmented correlation‐consistent based, convergence of interaction energies in correlated calculations. However, the present version of NAO constructed in the DFT calculations on covalently‐bound diatomics exhibits enormous basis‐set superposition error (BSSE)—even with the largest bases. Moreover, these basis sets are essentially unable to capture diffuse character of the wave function, necessary for example, for the complete convergence of correlated interaction energies of the weakly‐bound complexes. The problem is usually treated by addition of the external Gaussian diffuse functions to the NAO part, what indeed allows to obtain accurate results. However, the operation increases BSSE with the resulting hybrid basis sets even further and breaks down the initial concept of NAO (i.e., improved compactness) due to the significant increase in their size. These findings clearly point at the need in the alternative strategies for the construction of sufficiently‐delocalized and BSSE‐balanced purely‐numerical bases adapted for correlated calculations, possible ones were outlined here. For comparison with the considered NAOs, a complementary study on the convergence properties of the correlation‐consistent basis sets, with a special emphasis on BSSE, was also performed. Some of its conclusions may represent independent interest. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
18.
This article is an account and extension of a series of recent investigations, which using extensive quantum chemical methods provide analytical hyperspherical representations of the potential energy surfaces for the interactions of rare gases with H2S as a rigid molecule, and H2S2, considered as a floppy molecule with respect to torsional mode. For the H2S‐rare gas systems, the representation is based on a minimal model, here introduced and discussed. For H2S2, the study of the interaction with Xe, not considered previously, completes the series. The results are discussed with reference to the properties and trends expected for interactions of van der Waals type. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
In order to obtain efficient basis sets for the evaluation of van der Waals complex intermolecular potentials, we carry out systematic basis set studies. For this, interaction energies at representative geometries on the potential energy surfaces are evaluated using the CCSD(T) correlation method and large polarized LPol‐n and augmented polarization‐consistent aug‐pc‐2 basis sets extended with different sets of midbond functions. On the basis of the root mean square errors calculated with respect to the values for the most accurate potentials available, basis sets are selected for fitting the corresponding interaction energies and getting analytical potentials. In this work, we study the Ne–N2 van der Waals complex and after the above procedure, the aug‐pc‐2–3321 and the LPol‐ds‐33221 basis set results are fitted. The obtained potentials are characterized by T‐shaped global minima at distances between the Ne atom and the N2 center of mass of 3.39 Å, with interaction energies of ?49.36 cm?1 for the aug‐pc‐2–3321 surface and ?50.28 cm?1 for the LPol‐ds‐33221 surface. Both sets of results are in excellent agreement with the reference surface. To check the potentials further microwave transition frequencies are calculated that agree well with the experimental and the aV5Z‐33221 values. The success of this study suggests that it is feasible to carry out similar accurate calculations of interaction energies and ro‐vibrational spectra at reduced cost for larger complexes than has been possible hitherto. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号