首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reductive coupling of nitric oxide (NO) to give N2O is an important reaction in the global nitrogen cycle. Here, a dinickel(II) dihydride complex 1 that releases H2 upon substrate binding and serves as a masked dinickel(I) scaffold is shown to reductively couple two molecules of NO within the bimetallic cleft. The resulting hyponitrite complex 2 features an unprecedented cis‐[N2O2]2? binding mode that has been computationally proposed as a key intermediate in flavodiiron nitric oxide reductases (FNORs). NMR and DFT evidence indicate facile rotational fluxionality of the [N2O2]2? unit, which allows to access an isomer that is prone to N2O release. Protonation of 2 is now found to trigger rapid N2O evolution and formation of a hydroxido bridged complex, reminiscent of FNOR reactivity. This work provides fundamental insight into the biologically relevant reductive coupling of two NO molecules and the subsequent trajectory towards N2O formation at bimetallic sites.  相似文献   

2.
《中国化学会会志》2020,67(2):185-185
This invited paper depicts that nitric oxide reductases have been recognized as NO denitrification to N2O by utilizing transition metal ions cofactor. Biomimetic model study signifies that transition metal-mediated NO-to-[N2O2]2−-to-N2O transformation via either the inter/intra-molecular [NO]-[NO] coupling or metal-[NO]2− radical coupling with exogenous ·NO. More details about this figure will be discussed by Prof. Wen-Feng Liaw and his co-worker on page 260–266 in this issue.

  相似文献   


3.
Reduction of the {Co(NO)}8 cobalt–nitrosyl N‐confused porphyrin (NCP) [Co(CTPPMe)(NO)] ( 1 ) produced electron‐rich {Co(NO)}9 [Co(CTPPMe)(NO)][Co(Cp*)2] ( 2 ), which was necessary for NO‐to‐N2O conversion. Complex 2 was NO‐reduction‐silent in neat THF, but was partially activated to a hydrogen‐bonded species 2 ??? MeOH in THF/MeOH (1:1, v/v). This species coupling with 2 transformed NO into N2O, which was fragmented from an [N2O2]‐bridging intermediate. An intense IR peak at 1622 cm?1 was ascribed to ν(NO) in an [N2O2]‐containing intermediate. Time–course ESI(?) mass spectra supported the presence of the dimeric [Co(NCP)]2(N2O2) intermediate. Five complete NO‐to‐N2O conversion cycles were possible without significant decay in the amount of N2O produced.  相似文献   

4.
S-Nitrosothiols (RSNOs) serve as air-stable reservoirs for nitric oxide in biology. While copper enzymes promote NO release from RSNOs by serving as Lewis acids for intramolecular electron-transfer, redox-innocent Lewis acids separate these two functions to reveal the effect of coordination on structure and reactivity. The synthetic Lewis acid B(C6F5)3 coordinates to the RSNO oxygen atom, leading to profound changes in the RSNO electronic structure and reactivity. Although RSNOs possess relatively negative reduction potentials, B(C6F5)3 coordination increases their reduction potential by over 1 V into the physiologically accessible +0.1 V vs. NHE. Outer-sphere chemical reduction gives the Lewis acid stabilized hyponitrite dianion trans-[LA-O-N=N-O-LA]2− [LA=B(C6F5)3], which releases N2O upon acidification. Mechanistic and computational studies support initial reduction to the [RSNO-B(C6F5)3] radical anion, which is susceptible to N−N coupling prior to loss of RSSR.  相似文献   

5.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

6.
In class Ib ribonucleotide reductases (RNRs) a dimanganese(II) cluster activates superoxide (O2) rather than dioxygen (O2), to access a high valent MnIII−O2−MnIV species, responsible for the oxidation of tyrosine to tyrosyl radical. In a biomimetic approach, we report the synthesis of a thiolate-bound dimanganese complex [MnII2(BPMT)(OAc)2](ClO)4 (BPMT=(2,6-bis{[bis(2-pyridylmethyl)amino]methyl}-4-methylthiophenolate) ( 1 ) and its reaction with O2 to form a [(BPMT)MnO2Mn]2+ complex 2 . Resonance Raman investigation revealed the presence of an O−O bond in 2 , while EPR analysis displayed a 16-line St=1/2 signal at g=2 typically associated with a MnIIIMnIV core, as detected in class Ib RNRs. Unlike all other previously reported Mn−O2−Mn complexes, generated by O2 activation at Mn2 centers, 2 proved to be a capable electrophilic oxidant in aldehyde deformylation and phenol oxidation reactions, rendering it one of the best structural and functional models for class Ib RNRs.  相似文献   

7.
The reaction of hexachlorophosphazene, P3N3Cl6, with SO3 and the gold halides AuCl3 and AuBr3, respectively, leads to the new cyclic anionic tetramer, [S4N2O10]2−, which is coordinated to Au3+ in the dimeric complexes [Au2X2(S4N2O10)2] (X=Cl, Br). The [S4N2O10]2− anion can be seen as the condensation product of two sulfate anions, [SO4]2−, and two amidosulfate anions, [NH2SO3].  相似文献   

8.
Poly[bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) γ‐octamolybdate(VI) dihydrate], {(C10H16N4)2[Mo8O26]·2H2O}n, (I), and bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) α‐dodecamolybdo(VI)silicate tetrahydrate, (C10H16N4)2[SiMo12O40]·4H2O, (II), display intense hydrogen bonding between the cationic pyrazolium species and the metal oxide anions. In (I), the asymmetric unit contains half a centrosymmetric γ‐type [Mo8O26]4− anion, which produces a one‐dimensional polymeric chain by corner‐sharing, one cation and one water molecule. Three‐centre bonding with 3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium, denoted [H2Me4bpz]2+ [N...O = 2.770 (4)–3.146 (4) Å], generates two‐dimensional layers that are further linked by hydrogen bonds involving water molecules [O...O = 2.902 (4) and 3.010 (4) Å]. In (II), each of the four independent [H2Me4bpz]2+ cations lies across a twofold axis. They link layers of [SiMo12O40]4− anions into a three‐dimensional framework, and the preferred sites for pyrazolium/anion hydrogen bonding are the terminal oxide atoms [N...O = 2.866 (6)–2.999 (6) Å], while anion/aqua interactions occur preferentially viaμ2‐O sites [O...O = 2.910 (6)–3.151 (6) Å].  相似文献   

9.
The deoxygenative conversion of carbon dioxide to carbon monoxide is promoted by the aluminyl anion [Al(NONAr)]? (NONAr=[O(SiMe2NAr)2]2?, Ar=2,6‐iPr2C6H3). The reaction proceeds via the isolable monoalumoxane anion [Al(NONAr)(O)]?, containing a terminal aluminum‐oxygen bond. This species reacts with a second equivalent of carbon dioxide to afford the carbonate [Al(NONAr)(CO3)]?, and with nitrous oxide to generate the hyponitrite anion, [Al(NONAr)(κ2O,O′‐N2O2)]?.  相似文献   

10.
AM1 semiempirical molecular orbital calculations are reported for 20 ion-neutral complexes, including hydrogen-bonded complexes, presumably involved in the gas-phase unimolecular decomposition of simple organic radical cations. The systems investigated are [C2H4O2]˙+, [C2H5NO]˙+, [C2H6O]˙+, [C2H6O2]˙+, [C3H6O]˙+, [C3H6O2]˙+, [C3H8O]˙+, and [C3H8O2]˙+. The AM1 results are compared with ab initio molecular orbital calculations at different levels of theory up to MP3/6-31G(d, p)//SCF/6-31G(d) + ZPVE and the available experimental data. AM1 fails to predict some local minima and the equilibrium geometries calculated for several complexes are found to be qualitatively different from those predicted by the ab initio calculations. However, reasonable agreement is generally found for the stabilization energies of the complexes toward dissociation into their loosely bound components. © John Wiley & Sons, Inc.  相似文献   

11.
In diaqua­tetra‐μ‐acetamidato‐κ4N:O4O:N‐di­rhodium(II,III) hexa­fluoro­phosphate, [Rh2(C2H4NO)4(H2O)2]PF6, and diaqua­tetra‐μ‐acetamidato‐κ4N:O4O:N‐di­rho­dium(II,III)hexa­fluoro­phosphate dihydrate, [Rh2(C2H4NO)4(H2O)2]PF6·2H2O, the cations and anions lie on inversion centers. Diaqua­tetra‐μ‐propionamidato‐κ4N:O4O:N‐dirhodium(II,III) hexa­fluoro­phosphate dihydrate, [Rh2(C3H6NO)4(H2O)2]PF6·2H2O, and diaqua­tetra‐μ‐butyramidato‐κ4N:O4O:N‐dirhodium(II,III) hexa­fluoro­phosphate, [Rh2(C4H8NO)4(H2O)2]PF6, crystallize with two crystallographically independent complexes that lie on inversion centers. In all of the structures, the dirhodium units are hydrogen bonded to one another. The hydrogen‐bonded networks vary with the alkyl substituents.  相似文献   

12.
The kinetics and thermodynamics of O2 addition to CoII complexes containing the simple triamine ligand (L) diethylenetriamine (=N‐(2‐aminoethyl)ethane‐1,2‐diamine; dien) or N,N″‐dimethyldiethylenetriamine (=N‐methyl‐N′‐[2‐(methylamino)ethyl]ethane‐1,2‐diamine; dmdien) in the aprotic solvent dimethyl sulfoxide (DMSO) were studied by UV/VIS spectrophotometry, potentiometry, and O2 absorption measurements. A parallel investigation on the anaerobic formation of CoII complexes with dmdien, as well as on their reactivity towards O2, was carried out in aqueous 0.1M NaClO4 solution. [CoL]2+ and [CoL2]2+ were the common species formed under anaerobic conditions in both aqueous and DMSO solutions. Under aerobic conditions, O2 adducts of different stoichiometry were formed: a superoxo complex [CoL2O2]2+ in DMSO and dimeric species in H2O. The role of the reaction medium as well as effects of N‐alkylation of the triamine ligand in the formation and reactivity of the [CoII(triamine)] complexes are discussed.  相似文献   

13.
In the title salt, (C6H8N4)[Mn(C14H8O4)2(C6H6N4)2]·6H2O, the MnII atom lies on an inversion centre and is coordinated by four N atoms from two 2,2′‐biimidazole (biim) ligands and two O atoms from two biphenyl‐2,4′‐dicarboxylate (bpdc) anions to give a slightly distorted octahedral coordination, while the cation lies about another inversion centre. Adjacent [Mn(bpdc)2(biim)2]2− anions are linked via two pairs of N—H...O hydrogen bonds, leading to an infinite chain along the [100] direction. The protonated [H2biim]2+ moiety acts as a charge‐compensating cation and space‐filling structural subunit. It bridges two [Mn(bpdc)2(biim)2]2− anions through two pairs of N—H...O hydrogen bonds, constructing two R22(9) rings, leading to a zigzag chain in the [2] direction, which gives rise to a ruffled set of [H2biim]2+[Mn(bpdc)2(biim)2]2− moieties in the [01] plane. The water molecules give rise to a chain structure in which O—H...O hydrogen bonds generate a chain of alternating four‐ and six‐membered water–oxygen R42(8) and R66(12) rings, each lying about independent inversion centres giving rise to a chain along the [100] direction. Within the water chain, the (H2O)6 water rings are hydrogen bonded to two O atoms from two [Mn(bpdc)2(biim)2]2− anions, giving rise to a three‐dimensional framework.  相似文献   

14.
The novel title hybrid isomorphous organic–inorganic mixed‐metal dichromates, [Ni(Cr2O7)(C10H8N2)2] and [Cu(Cr2O7)(C10H8N2)2], have been synthesized. A non‐centrosymmetric three‐dimensional (4,6)‐net is formed from a linear chain of vertex‐linked [Cr2O]2− and [MN4O]2+ (M = Ni and Cu) units, which in turn are linked by the planar bidentate 4,4′‐­bipyridine ligand through the four remaining vertices of the [MN4O]2+ octahedra. There are two such three‐dimensional nets that interpenetrate with inversion symmetry.  相似文献   

15.
The new complexes K2[Ni(Hheo)2], K2[Cu(Hheo)2]·H2O, K2[Ni(Hhpo)2]·H2O, K2[M(Hhpo)2]·0.5H2O (M = Cu, Pd) and K2[Cu2(hpo)2·0.5H2O, where H3heo = N-(2-hydroxyethyl)oxamide and H3hpo = N-(3-hydroxypropyl)oxamide, have been prepared. Several synthetic routes were investigated and the complexes were characterized by analyses, conductivity measurements, thermogravimetry, magnetic susceptibility and spectroscopy (i.r. and far i.r., diffuse reflectance u.v.). Monomeric square planar structures are found for the [M(Hheo)2]2− and [M(Hhpo)2]2− complex anions, while the hpo3− Cu(II) complex appears to be a square planar dimer. The doubly deprotonated Hheo2− and Hhpo2− ions exhibit a bidentate N(secondary amide), N′(tertiary amide)-coordination with the OH-group remaining uncoordinated, while the triply deprotonated hpo3− ion behaves as a bridging N(secondary amide), N′(tertiary amide), O(deprotonated) ligand, while two Cu(II) centres are bridged by two alkoxide-O atoms. The vibrational analysis of the dehydrated complexes is carried out, using NH/ND, OH/OD, 58Ni/62Ni and 63Cu/65Cu substitutions.  相似文献   

16.
Pb2(Hg3O4)(CrO4) consists of [CrO4]2− tetra­hedra, linear O—Hg—O dumbbells and divalent Pb atoms in [3+5]‐coordination. The HgO2 dumbbells are condensed into [Hg3O4]2− units and can be regarded as a section of the HgO structure. The [Hg3O4]2− complex anions are connected by inter­stitial Pb2+ ions, while the [CrO4]2− tetra­hedra are isolated.  相似文献   

17.
In the mixed‐metal complex catena‐poly[bis[diaquasilver(I)] [bis[aquacopper(II)]‐μ3‐pyridine‐2,5‐dicarboxylato‐2′:1:1′κ5N,O2:O5:O5,O5′‐μ‐pyridine‐2,5‐dicarboxylato‐2:1κ4N,O2:O5,O5′‐disilver(I)‐μ3‐pyridine‐2,5‐dicarboxylato‐1:1′:2′′κ5O5,O5′:O5:N,O2‐μ‐pyridine‐2,5‐dicarboxylato‐1′:2′′′κ4O5,O5′:N,O2] hexahydrate], {[Ag(H2O)2][AgCu(C7H3NO4)2(H2O)]·3H2O}n, a square‐pyramidal CuII center is coordinated by two N atoms and two O atoms from two pyridine‐2,5‐dicarboxylate (2,5‐pydc) ligands and a water molecule, forming a [Cu(2,5‐pydc)2(H2O)]2− metalloligand. One AgI center is coordinated by five O atoms from three 2,5‐pydc ligands and, as a result, the [Cu(2,5‐pydc)2(H2O)]2− metalloligands act as linkers in a unique μ3‐mode connecting AgI centers into a one‐dimensional anionic double chain along the [101] direction. The other AgI center is coordinated by two water molecules, forming an [Ag(H2O)2]+ cation. Four adjacent AgI centers are associated by Ag...Ag interactions [3.126 (1) and 3.118 (1) Å], producing a Z‐shaped Ag4 unit along the [010] direction and connecting the anionic chains into a two‐dimensional layer structure. This study offers information for engineering mixed‐metal complexes based on copper(II)–pyridinedicarboxylate metalloligands.  相似文献   

18.
Aluminium oxides constitute an important class of inorganic compound that are widely exploited in the chemical industry as catalysts and catalyst supports. Due to the tendency for such systems to aggregate via Al‐O‐Al bridges, the synthesis of well‐defined, soluble, molecular models for these materials is challenging. Here we show that reactions of the potassium aluminyl complex K2[( NON )Al]2 ( NON =4,5‐bis(2,6‐diiso‐propylanilido)‐2,7‐di‐tert‐butyl‐9,9‐dimethylxanthene) with CO2, PhNCO and N2O all proceed via a common aluminium oxide intermediate. This highly reactive species can be trapped by coordination of a THF molecule as the anionic oxide complex [( NON )AlO(THF)]?, which features discrete Al?O bonds and dimerizes in the solid state via weak O???K interactions. This species reacts with a range of small molecules including N2O (to give a hyponitrite ([N2O2]2?) complex) and H2, the latter offering an unequivocal example of heterolytic E?H bond cleavage across a main group M?O bond.  相似文献   

19.
The thermal reduction of N2O by CO mediated by the metal‐free cluster cations [Si2Ox].+ (x =2–5) has been examined in the gas phase using Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry in conjunction with quantum chemical calculations. Three successive oxidation/reduction steps occur starting from [Si2O2].+ and N2O to form eventually [Si2O5].+; the latter as well as the intermediate oxide cluster ions react sequentially with CO molecules to regenerate [Si2O2].+. Thus, full catalytic cycles occur at ambient conditions in the gas phase. Mechanistic aspects of these sequential redox processes have been addressed to reveal the electronic origins of these unparalleled reactions.  相似文献   

20.
X-ray structures of the halo-substituted complexes [FeIII(5-X-salMeen)2]ClO4 (X=F, Cl, Br, I) [salMeen=N-methyl-N-(2-aminoethyl)salicylaldiminate]at RT have revealed the presence of two discrete HS complex cations in the crystallographic asymmetric unit with two perchlorate counter ions linking them by N−Hamine⋅⋅⋅Operchlorate interactions. At 90 K, the two complex cations are distinctly HS and LS, a rare crystallographic observation of this coexistence in the FeIII-salRen (R=alkyl) spin-crossover (SCO) system. At both temperatures, crystal packing shows dimerization through C−Himine⋅⋅⋅Ophenolate interactions, a key feature for SCO cooperativity. Moreover, there are noncovalent contacts between the complex cations through type-II halogen-halogen bonds, which are novel in this system. The magnetic profiles and Mössbauer spectra concur with the structural analyses and reveal 50 % SCO of the type [HS-HS]↔[HS-LS] with a broad plateau. In contrast, [FeIII(5-Cl-salMeen)2]BPh4⋅2MeOH is LS and exhibits a temperature-dependent crystallographic phase transition, exemplifying the influence of lattice solvents and counter ions on SCO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号