首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spiro-substituted nitroxyl biradicals are widely used as reagents for dynamic nuclear polarization (DNP), which is especially important for biopolymer research. The main criterion for their applicability as polarizing agents is the value of the spin–spin exchange interaction parameter (J), which can vary considerably when different couplers are employed that link the radical moieties. This paper describes a study on biradicals, with a ferrocene-1,1′-diyl-substituted 1,3-diazetidine-2,4-diimine coupler, that have never been used before as DNP agents. We observed a substantial difference in the temperature dependence between Electron Paramagnetic Resonance (EPR) spectra of biradicals carrying either methyl or spirocyclohexane substituents and explain the difference using Density Functional Theory (DFT) calculation results. It was shown that the replacement of methyl groups by spirocycles near the N-O group leads to an increase in the contribution of conformers having J ≈ 0. The DNP gain observed for the biradicals with methyl substituents is three times higher than that for the spiro-substituted nitroxyl biradicals and is inversely proportional to the contribution of biradicals manifesting the negligible exchange interaction. The effects of nucleophiles and substituents in the nitroxide biradicals on the ring-opening reaction of 1,3-diazetidine and the influence of the ring opening on the exchange interaction were also investigated. It was found that in contrast to the methyl-substituted nitroxide biradical (where we observed the ring-opening reaction upon the addition of amines), the ring opening does not occur in the spiro-substituted biradical owing to a steric barrier created by the bulky cyclohexyl substituents.  相似文献   

2.
A potentially biocompatible class of spin‐labeled macromolecules, spin‐labeled (SL) heparins, and their use as nuclear magnetic resonance (NMR) signal enhancers are introduced. The signal enhancement is achieved through Overhauser‐type dynamic nuclear polarization (DNP). All presented SL‐heparins show high 1H DNP enhancement factors up to E=?110, which validates that effectively more than one hyperfine line can be saturated even for spin‐labeled polarizing agents. The parameters for the Overhauser‐type DNP are determined and discussed. A striking result is that for spin‐labeled heparins, the off‐resonant electron paramagnetic resonance (EPR) hyperfine lines contribute a non‐negligible part to the total saturation, even in the absence of Heisenberg spin exchange (HSE) and electron spin‐nuclear spin relaxation (T1ne). As a result, we conclude that one can optimize the use of, for example, biomacromolecules for DNP, for which only small sample amounts are available, by using heterogeneously distributed radicals attached to the molecule.  相似文献   

3.
A highly efficient multigram synthesis of spirocyclic and fused isoxazoline building blocks is described. Isoxazoline-3-carboxylates were synthesized via a regioselective 1,3-dipolar cycloaddition reaction of 2-chloro-2-(hydroxyimino)acetate and carbo- or heterocyclic alkenes bearing endo- or exocyclic C=C double bonds, resulting in fused or spirocyclic isoxazolines, respectively. The preparation of up to 300 g of these compounds was achieved in a single run. The ester group of isoxazolines was then subjected to common synthetic transformations for the synthesis of corresponding building blocks, including alcohols, chlorides, azides, amines, aldehydes, carboxylic acids, amino acids and their derivatives, difluoromethyl-substituted compounds, and bicyclic γ-lactones. Additionally, a direct cycloaddition-based approach to the synthesis of aminoalkyl- and chloromethyl-substituted isoxazolines was proposed to improve their preparation. The described isoxazoline building blocks are expected to be valuable tools for drug discovery.  相似文献   

4.
5.
Cross‐effect (CE) dynamic nuclear polarization (DNP) is a rapidly developing technique that enhances the signal intensities in magic‐angle spinning (MAS) NMR spectra. We report CE DNP experiments at 211, 600, and 800 MHz using a new series of biradical polarizing agents referred to as TEMTriPols, in which a nitroxide (TEMPO) and a trityl radical are chemically tethered. The TEMTriPol molecule with the optimal performance yields a record 1H NMR signal enhancement of 65 at 800 MHz at a concentration of 10 mM in a glycerol/water solvent matrix. The CE DNP enhancement for the TEMTriPol biradicals does not decrease as the magnetic field is increased in the manner usually observed for bis‐nitroxides. Instead, the relatively strong exchange interaction between the trityl and nitroxide moieties determines the magnetic field at which the optimum enhancement is observed.  相似文献   

6.
Unprecedented neutral perylene‐3,4:9,10‐tetracarboxylic acid bisimide (PBI) radicals and biradicals were synthesized by facile chemical oxidation of 4‐hydroxyaryl‐substituted PBIs. Subsequent characterization by optical and magnetic spectroscopic techniques, as well as quantum chemical calculations, revealed an open‐shell singlet biradical ground state for the PBI biradical OS ‐ 2.. (〈s2〉=1.2191) with a relatively small singlet–triplet energy gap of 0.041 eV and a large singlet biradical character of y=0.72.  相似文献   

7.
8.
9.
10.
An efficient synthesis of spirocyclic triazolooxazine nucleosides is described. This was achieved by the conversion of β‐D ‐psicofuranose to the corresponding azido‐derivative, followed by alkylation of the primary alcohol with a range of propargyl bromides, obtained by Sonogashira chemistry. The products of these reactions underwent 1,3‐dipolar addition smoothly to generate the protected spirocyclic adducts. These were easily deprotected to give the corresponding ribose nucleosides. The library of compounds obtained was investigated for its antiviral activity using MHV (mouse hepatitis virus) as a model wherein derivative 3 f showed the most promising activity and tolerability.  相似文献   

11.
A two-step synthesis of less accessible spiro[cyclobutene-1,9′-fluorene] compounds from biaryl-alkynes and 2-(2-fluoropyridin-1-ium-1-yl)-1,1-bis((trifluoromethyl)sulfonyl)ethan-1-ide, which serves as a potent precursor for outstandingly electrophilic Tf2C=CH2, has been developed. This synthetic methodology includes selective formation of gem-bis(triflyl)cyclobutenes from biaryl-alkynes and Tf2C=CH2 followed by desulfinative spirocyclisation mediated by 1,1,1,3,3,3-hexafluoroisopropyl alcohol (HFIP). Besides, on the basis of the chameleonic reactivity of sulfone functionality, several derivatisations of triflylated spiro[cyclobutene-1,9′-fluorene] products have been successfully achieved.  相似文献   

12.
The zirconium‐mediated synthesis of a new class of air‐stable spirocyclic germafluorene–germole (SGG) luminogens is reported. These species contain ring‐fused germafluorene and germole units that display color‐tunable fluorescence when peripheral aryl substituents are appended. Three distinct pathways are introduced for SGG modification (Stille, Suzuki–Miyaura, and zirconocene‐mediated couplings), which enable the preparation of new libraries of molecular and polymeric SGG light‐emitters with tunable luminescence and desirable thermal‐ and photo‐stability.  相似文献   

13.
A new polarizing agent with superior performance in dynamic nuclear polarization experiments is introduced, and utilizes two TEMPO (2,2,6,6‐tetramethylpiperidine‐1‐oxyl) moieties connected through a rigid spiro tether (see structure). The observed NMR signal intensities were enhanced by a factor of 1.4 compared to those of TOTAPOL, a previously described TEMPO‐based biradical with a flexible tether.

  相似文献   


14.
15.
Insulin-regulated aminopeptidase (IRAP) is a new potential macromolecular target for drugs aimed for treatment of cognitive disorders. Inhibition of IRAP by angiotensin IV (Ang IV) improves the memory and learning in rats. The majority of the known IRAP inhibitors are peptidic in character and suffer from poor pharmacokinetic properties. Herein, we present a series of small non-peptide IRAP inhibitors derived from a spiro-oxindole dihydroquinazolinone screening hit (pIC50 5.8). The compounds were synthesized either by a simple microwave (MW)-promoted three-component reaction, or by a two-step one-pot procedure. For decoration of the oxindole ring system, rapid MW-assisted Suzuki-Miyaura cross-couplings (1 min) were performed. A small improvement of potency (pIC50 6.6 for the most potent compound) and an increased solubility could be achieved. As deduced from computational modelling and MD simulations it is proposed that the S-configuration of the spiro-oxindole dihydroquinazolinones accounts for the inhibition of IRAP.  相似文献   

16.
An efficient and highly regioselective iron(III)‐catalyzed Friedel–Crafts‐type arylation of spiro‐epoxyoxindoles with phenols was developed for rapid access to 3‐(3‐indolyl)‐oxindole‐3‐methanols, which could be further elaborated into benzofuranyl‐spirooxindoles under Mitsunobu conditions. When spiro‐epoxyoxindoles were reacted with naphthols in the presence of a catalytic amount of FeCl3?6 H2O in dichloromethane, they underwent a tandem Friedel–Crafts‐type arylation and O‐cyclization to yield novel naphthofuranyl‐spirooxindoles in excellent yields. This method is applied to enable the efficient and highly regioselective synthesis of a small‐molecule inhibitor of the sodium channel Nav1.7 (±)‐XEN402, which is currently in a phase IIb clinical trial for the treatment of pain.  相似文献   

17.
A variety of analytical techniques, such as scanning electron microscopy and 19F dynamic nuclear polarization (DNP) methods, are applied to characterize asphaltene extracted from MC-800 liquid asphalt in fluorobenzene derivatives at 1.53 mT and at room temperature. Different solvents show variable affinities for the asphaltene surface. The low field EPR spectrum of the asphaltene/hexafluorobenzene sample was recorded. The DNP parameters were determined. Additionally, the interactions between the nuclei of the solvent and the electrons delocalized on the asphaltene are interpreted. Not only dipolar but also scalar interactions between the nuclear spin and the electron spin were found.  相似文献   

18.
19.
20.
The application of non-planar scaffolds in drug design allows for the enlargement of the chemical space, and for the construction of molecules that have more effective target–ligand interactions or are less prone to the development of resistance. Among the works of the last decade, a literature search revealed spirothiazamenthane, which has served as a lead in the development of derivatives active against resistant viral strains. In this work, we studied the novel molecular scaffold, which resembles spirothiazamenthane, but combines isoxazoline as a heterocycle and cyclooctane ring as a hydrophobic part of the structure. The synthesis of new 3-nitro- and 3-aminoisoxazolines containing spiro-fused or 1,2-annelated cyclooctane fragments was achieved by employing 1,3-dipolar cycloaddition of 3-nitro-4,5-dihydroisoxazol-4-ol 2-oxide or tetranitromethane-derived alkyl nitronates with non-activated alkenes. A series of spiro-sulfonamides was obtained by the reaction of 3-aminoisoxazoline containing a spiro-fused cyclooctane residue with sulfonyl chlorides. Preliminary screening of the compounds for antiviral, antibacterial, antifungal and antiproliferative properties in vitro revealed 1-oxa-2-azaspiro[4.7]dodec-2-en-3-amine and 3a,4,5,6,7,8,9,9a-octahydrocycloocta[d]isoxazol-3-amine with activity against the influenza A/Puerto Rico/8/34 (H1N1) virus in the submicromolar range, and high values of selectivity index. Further study of the mechanism of the antiviral action of these compounds, and the synthesis of their analogues, is likely to identify new agents against resistant viral strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号