首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Detailed molecular orbital and bonding analyses reveal the existence of both fluxional σ- and π-bonds in the global minima Cs ( 1 ) and Cs MB18 ( 3 ) and transition states Cs ( 2 ) and Cs ( 4 ) of dianion and monoanions (M = K, Rb, and Cs). It is the fluxional bonds that facilitate the fluxional behaviors of the quasi-planar and half-sandwich which possess energy barriers smaller than the difference of the corresponding zero-point corrections. © 2019 Wiley Periodicals, Inc.  相似文献   

2.
The Jarzynski equality is one of the most widely celebrated and scrutinized nonequilibrium work theorems, relating free energy to the external work performed in nonequilibrium transitions. In practice, the required ensemble average of the Boltzmann weights of infinite nonequilibrium transitions is estimated as a finite sample average, resulting in the so-called Jarzynski estimator, . Alternatively, the second-order approximation of the Jarzynski equality, though seldom invoked, is exact for Gaussian distributions and gives rise to the Fluctuation-Dissipation estimator . Here we derive the parametric maximum-likelihood estimator (MLE) of the free energy considering unidirectional work distributions belonging to Gaussian or Gamma families, and compare this estimator to . We further consider bidirectional work distributions belonging to the same families, and compare the corresponding bidirectional to the Bennett acceptance ratio () estimator. We show that, for Gaussian unidirectional work distributions, is in fact the parametric MLE of the free energy, and as such, the most efficient estimator for this statistical family. We observe that and perform better than and , for unidirectional and bidirectional distributions, respectively. These results illustrate that the characterization of the underlying work distribution permits an optimal use of the Jarzynski equality. © 2018 Wiley Periodicals, Inc.  相似文献   

3.
In this work, we investigated the nonlinear optical (NLO) properties of excess electron electride molecules of M[Cu(Ag)@(NH3)n](M = Be, Mg and Ca; n = 1–3) using density functional theory (DFT). This electride molecules consist of an alkaline-earth (Be, Mg and Ca) together with transition metal (Cu and Ag) doped in NH3 cluster. The natural population analysis of charge and their highest occupied molecular orbital suggests that the M[Cu(Ag)@(NH3)n] compound has excess electron like alkaline-earth metal form double cage electrides molecules, which exhibit a large static first hyperpolarizability () (electron contribution part) and one of which owns a peak value of 216,938 (a.u.) for Be[Ag@(NH3)2] and vibrational harmonic first hyperpolarizability () (nuclear contribution part) values and the ratio of /, namely, η values from 0.02 for Be[Ag@(NH3)] to 0.757 for Mg[Ag@(NH3)3]. The electron density contribution in different regions on values mainly come from alkaline-earth and transition metal atoms by first hyperpolarizability density analysis, and also explains the reason why values are positive and negative. Moreover, the frequency-dependent values β(−2ω,ω,ω) are also estimated to make a comparison with experimental measures. © 2018 Wiley Periodicals, Inc.  相似文献   

4.
5.
Quantum chemical calculations on model copper paddlewheel (CPW) complexes of general formula [Cu2(μ2-O2CR)4L2] establish two local coordination geometries at the metal centers depending on the balance between equatorial and axial ligand fields. When the equatorial field is stronger than the axial field (large ligand field asymmetry), dominates the stereochemical activity of the d9 shell resulting in a relatively rigid, “orbitally directed” planar or square pyramidal structure. However, if the axial field is significantly increased, or the equatorial field moderately weakened, a small ligand field asymmetry results and both and are involved in the stereochemical activity. This results in a “plastic,” distorted trigonal bipyramidal geometry where the former axial ligand moves into one of the original four equatorial positions. Linkers already used to synthesize zinc-dabco MOFs (dabco = 1,4-diazabicyclo[2.2.2]octane) are shown to generate plastic CPW secondary building unit analogs with potential implications for conferring breathing behavior for MOFs which would currently be assumed to be rigid. © 2019 Wiley Periodicals, Inc.  相似文献   

6.
Anionic species of aspartic acid, Asp, having a zwitterionic backbone and a deprotonated side chain, appears to be a good example for analyzing dipole-ion and ion pair interactions. Density functional theory calculations were herein performed to investigate the low energy conformers of Asp embedded in a dielectric continuum modeling an aqueous environment, through a scan of the potential energy as a function of the side chain (χ1, χ2) torsion angles. The most energetically favorable conformers having g+g and gg+ side chain orientations are found to be stabilized by charge-enhanced intramolecular H-bonding involving the positively charged () and the two negatively charged (COO) groups. These conformers were further used to analyze Asp + nW clusters (W: water, n = 1 or 3), and Asp/Asp pair formation. COO groups were found to be the most attractive sites for hosting a water molecule (binding energy: −6.0 ± 1.5 kcal/mol), compared to groups (binding energy: −4.7 ± 1.1 kcal/mol). Energy separation between g+g and gg+ conformers increases upon explicit hydration. Asp/Asp ion pairs, stabilized by the interaction between the group of a partner and the COO group of the other, shows a quite constant binding energy (−8.1 ± 0.2 kcal/mol), whatever the pair type, and the relative orientation of the two interacting partners. This study suggests a first step to achieve a more realistic image of intermolecular interactions in aqueous environment, especially upon increasing concentration. It can also be considered as a preliminary attempt to assess the interactions of the Lys+…Asp/Glu ion pairs stabilizing intra- and interchain interactions in proteins.  相似文献   

7.
Dr. Luís P. Viegas 《Chemphyschem》2023,24(16):e202300259
Experimental work on the OH-initiated oxidation reactions of fluorotelomer aldehydes (FTALs) strongly suggests that the respective rate coefficients do not depend on the size of the CxF2x+1 fluoroalkyl chain. FTALs hence represent a challenging test to our multiconformer transition state theory (MC-TST) protocol based on constrained transition state randomization (CTSR), since the calculated rate coefficients should not show significant variations with increasing values of . In this work we apply the MC-TST/CTSR protocol to the cases and calculate both rate coefficients at 298.15 K with a value of cm3 molecule−1 s−1, practically coincident with the recommended experimental value of kexp= cm3 molecule−1 s−1. We also show that the use of tunneling corrections based on improved semiclassical TST is critical in obtaining Arrhenius-Kooij curves with a correct behavior at lower temperatures.  相似文献   

8.
In cluster studies, the isoelectronic replacement strategy has been successfully used to introduce new elements into a known structure while maintaining the desired topology. The well-known penta-atomic 18 valence electron (ve) species and its Al/Si or Al/Si+ isoelectronically replaced clusters CAl3Si, CAl2Si2, , and , all possess the same anti-van't Hoff/Le Bel skeletons, that is, nontraditional planar tetracoordinate carbon (ptC) structure. In this article, however, we found that such isoelectronic replacement between Si and Al does not work for the 16ve-CAl4 with the traditional van't Hoff/Le Bel tetrahedral carbon (thC) and its isoelectronic derivatives CAl3X (X = Ga/In/Tl). At the level of CCSD(T)/def2-QZVP//B3LYP/def2-QZVP, none of the global minima of the 16ve mono-Si-containing clusters CAl2SiX+ (X = Al/Ga/In/Tl) maintains thC as the parent CAl4 does. Instead, X = Al/Ga globally favors an unusual ptC structure that has one long C─X distance yet with significant bond index value, and X = In/Tl prefers the planar tricoordinate carbon. The frustrated formation of thC in these clusters is ascribed to the CSi bonding that prefers a planar fashion. Inclusion of chloride ion would further stabilize the ptC of CAl2SiAl+ and CAl2SiGa+. The unexpectedly disclosed CAl2SiAl+ and CAl2SiGa+ represent the first type of 16ve-cationic ptCs with multiple bonds. © 2019 Wiley Periodicals, Inc.  相似文献   

9.
Carbon 1s core-hole excitation of the molecular anion C2 has been experimentally studied at high resolution by employing the photon-ion merged-beams technique at a synchrotron light source. The experimental cross section for photo–double-detachment shows a pronounced vibrational structure associated with and core excitations of the C2 ground level and first excited level, respectively. A detailed Franck-Condon analysis reveals a strong contraction of the C2 molecular anion by 0.2 Å upon this core photoexcitation. The associated change of the molecule's moment of inertia leads to a noticeable rotational broadening of the observed vibrational spectral features. This broadening is accounted for in the present analysis which provides the spectroscopic parameters of the C2 and core-excited levels.  相似文献   

10.
Accurate structure and potential energy surface of germylene, GeH2, in its ground electronic state 1A1 were determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent basis sets up to sextuple-zeta quality. The Born-Oppenheimer equilibrium structural parameters for the 1A1 state are estimated to be re(GeH) = 1.5793 Å and e(HGeH) = 91.19. The term value Te for the lowest excited electronic state ã3B1 of GeH2 is predicted to be 9140 cm–1. The vibration-rotation energy levels for the 1A1 state of the 74GeH2, 74GeD2, 72GeH2, and 70GeH2 isotopologues were determined using a variational approach and compared with the experimental data. The role of the core-electron correlation, higher-order valence-electron correlation, scalar relativistic, spin-orbit, and adiabatic effects for prediction of the structure and vibration-rotation dynamics of the GeH2 molecule is discussed. © 2019 Wiley Periodicals, Inc.  相似文献   

11.
We study the kinetics of hydrogen sorption in Mg-Ti-H nanoparticles prepared by gas phase condensation of mixed Mg-Ti vapors under a H2-containing atmosphere. Four samples with different Ti contents from 14 to 63 at.% Ti are examined in the 100–150 °C range. The hydrogen absorption kinetics coupled with the formation of MgH2 can be described by a nucleation and growth model. The activation energy is in the range kJ/mol and the rate constant (at 150 °C) increases from s−1 to s−1 with increasing Ti content. Hydrogen desorption is well modeled by a sequence of surface-limited and contracting-volume kinetics, except at the highest Ti content where nucleation and growth is observed. The activation energy of surface-limited kinetics is /mol. The rate constant (at 150 °C) increases from s−1 to s−1 with the Ti content. These results open an unexplored kinetic window for Mg-based reversible hydrogen storage close to ambient temperature.  相似文献   

12.
13.
In the present work, mechanism of the O2(1Δg) generation from the reaction of the dissolved Cl2 with H2O2 in basic aqueous solution has been explored by the combined ab initio calculation and nonadiabatic dynamics simulation, together with different solvent models. Three possible pathways have been determined for the O2(1Δg) generation, but two of them are sequentially downhill processes until formation of the OOCl complex with water, which are of high exothermic character. Once the complex is formed, singlet molecular oxygen is easily generated by its decomposition along the singlet-state pathway. However, triplet molecular oxygen of O2() can be produced with considerable probability through nonadiabatic intersystem crossing in the 1Δg/ intersection region. It has been found that the coupled solvent, heavy-atom, and nonadiabatic effects have an important influence on the quantum yield of the O2(1Δg) generation. © 2018 Wiley Periodicals, Inc.  相似文献   

14.
Two pressure-induced phase transitions have been theoretically studied in the layered iron phosphorus triselenide (FePSe3 ). Topological analysis of chemical bonding in FePSe3 has been performed based on the results of first-principles calculations within the periodic linear combination of atomic orbitals (LCAO) method with hybrid Hartree-Fock-DFT B3LYP functional. The first transition at about 6 GPa is accompanied by the symmetry change from to C2/m , whereas the semiconductor-to-metal transition (SMT) occurs at about 13 GPa leading to the symmetry change from C2/m to . We found that the collapse of the band gap at about 13 GPa occurs due to changes in the electronic structure of FePSe3 induced by relative displacements of phosphorus or selenium atoms along the c-axis direction under pressure. The results of the topological analysis of the electron density and its Laplacian demonstrate that the pressure changes not only the interatomic distances but also the bond nature between the intralayer and interlayer phosphorus atoms. The interlayer P–P interactions are absent in two non-metallic FePSe3 phases while after SMT the intralayer P–P interactions weaken and the interlayer P–P interactions appear.  相似文献   

15.
We demonstrate a novel technique to obtain singular-value decomposition (SVD) of the coupled-cluster triple excitations amplitudes, . The presented method is based on the Golub-Kahan bidiagonalization strategy and does not require to be stored. The computational cost of the method is comparable to several coupled cluster singles and doubles (CCSD) iterations. Moreover, the number of singular vectors to be found can be predetermined by the user and only those singular vectors which correspond to the largest singular values are obtained at convergence. We show how the subspace of the most important singular vectors obtained from an approximate triple amplitudes tensor can be used to solve equations of the CC3 method. The new method is tested for a set of small and medium-sized molecular systems in basis sets ranging in quality from double- to quintuple-zeta. It is found that to reach the chemical accuracy (≈1 kJ/mol) in the total CC3 energies as little as 5 − 15% of SVD vectors are required. This corresponds to the compression of the amplitudes by a factor of about 0.0001 − 0.005 . Significant savings are obtained also in calculation of interaction energies or rotational barriers, as well as in bond-breaking processes. © 2019 Wiley Periodicals, Inc.  相似文献   

16.
In the present work, the kinetic mechanism of the reaction is studied. The rate constants were determined using the Master Equation Solver for Multi-Energy Well Reactions (MESMER). The master equation modeling was also employed to examine the pressure dependence for each pathway involved. The theoretical analysis shows that the overall rate coefficient is practically independent of pressure up to 100 Torr for the temperature range 125-500 K. The unusual dependence of the overall rate constant with temperature was fit with the d-Arrhenius expression , where cm3molecule−1s−1, , and  kJ·mol−1, for 125⩽ T ⩽ 500 K. The thermal rate constant results are in relatively good agreement with other theoretical studies.  相似文献   

17.
Azobenzene-based protonated N-heterocyclic carbenes (NHCs), N,N’-bis(azobenzene)imidazolium chlorides (IAz-X⋅HCl; X=OMe, Br, H) were successfully synthesized and switching abilities of the attached azobenzene units along with the concomitant photoinduced generation of geometric isomers were studied. Upon irradiation with 365 nm UV light, a p-methoxy-azobenzene derivative get transformed from all-trans isomer to nearly all-cis isomer at the photostationary state. The extent of photomodulation of electronic properties in the NHC ring of the p-methoxy-azobenzene derivative is determined through the Tolman Electronic Parameter (TEP). Iridium complex, [(IAz-OMe)IrCl(CO)2] was synthesized and infrared spectra were recorded in dichloromethane solution as film in NaCl crystals and by drop-casting in an ATR crystal. Comparison in averaged carbonyl stretching frequency between all-trans isomer ( ) and all-cis isomer ( ) indicates a significant decrement of Δtt–cc av=2.7 cm−1 (film) and 3.8 cm−1 (ATR). Therefore, moderate to excellent enhancement of electron density (Δtt–cc TEP=2.3 cm−1 [film] and 3.2 cm−1 [ATR]) at the C-2 position of the NHC is achieved through transcis isomerization of the remotely placed azobenzene units. This fine phototuning of electron-donating ability at the catalytic center would pave the way to control NHC/NHC-metal catalyzed organic transformations through external stimuli.  相似文献   

18.
The spatial variations in the diamagnetic and paramagnetic contributions to the off-nucleus isotropic shielding, , and to the zz component of the off-nucleus shielding tensor, , around benzene (C6H6) and cyclobutadiene (C4H4) are investigated using complete-active-space self-consistent field wavefunctions. Despite the substantial differences between and around the aromatic C6H6 and the antiaromatic C4H4, the diamagnetic and paramagnetic contributions to these quantities, and , and and , are found to behave similarly in the two molecules, shielding and deshielding, respectively, each ring and its surroundings. The different signs of the most popular aromaticity criterion, the nucleus-independent chemical shift (NICS), in C6H6 and C4H4 are shown to follow from a change in the balance between the respective diamagnetic and paramagnetic contributions. Thus, the different NICS values for antiaromatic and antiaromatic molecules cannot be attributed to differences in the ease of access to excited states only; differences in the electron density, which determines the overall bonding picture, also play an important role.  相似文献   

19.
20.
Spin Hamiltonian parameters of a pentanuclear Os Ni cyanometallate complex are derived from ab initio wave function based calculations, namely valence-type configuration interaction calculations with a complete active space including spin-orbit interaction (CASOCI) in a single-step procedure. While fits of experimental data performed so far could reproduce the data but the resulting parameters were not satisfactory, the parameters derived in the present work reproduce experimental data and at the same time have a reasonable size. The one-centre parameters (local matrices and single-ion zero field splitting tensors) are within an expected range, the anisotropic exchange parameters obtained in this work for an Os−Ni pair are not exceedingly large but determine the low-T part of the experimental χT curve. Exchange interactions (both isotropic and anisotropic) obtained from CASOCI have to be scaled by a factor of 2.5 to obtain agreement with experiment, a known deficiency of such types of calculation. After scaling the parameters, the isotropic Os−Ni exchange coupling constant is cm−1 and the D parameter of the (nearly axial) anisotropic Os−Ni exchange is −1, so anisotropic exchange is larger in absolute size than isotropic exchange. The negative value of the isotropic J (indicating antiferromagnetic coupling) seemingly contradicts the large-temperature behaviour of the temperature dependent susceptibility curve, but this is caused by the negative g value of the Os centres. This negative g value is a universal feature of a pseudo-octahedral coordination with configuration and strong spin-orbit interaction. Knowing the size of these exchange interactions is important because Os(CN) is a versatile building block for the synthesis of / magnetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号