首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of combretastatin A-4 based chalcones ( 14a-l ) were designed, synthesized and these compounds examined for inhibitory effects on the proliferation of human lung (A549), breast (MCF-7), melanoma (A375), and colon (HT-29) carcinoma cells. Compounds 14b , 14c , 14e , 14h , and 14i (tri/dimethoxy, methyl, and mono/dinitro derivatives) have exhibited the most potent antiproliferative activity with IC50 < 2 μM and the hexa methoxy derivative 14b , the most promising one, which displayed the potent inhibitory activities in MCF-7 (IC50: 10 nM), A375 (IC50: 12 nM), and A549 (IC50: 65 nM) cell lines, and is 18 times more potent than the CA-4. Compound 14b represents a new scaffold and the results provide insights into further development of anticancer agents.  相似文献   

2.
A series of thieno[2,3-d]pyrimidines were designed and synthesized as epidermal growth factor receptor (EGFR) inhibitors. These compounds were tested for their ability to inhibit MCF-7 and A549 cancer cells. The most active compound, 12c , inhibited the growth of both cell lines, with IC50 values of 15.67 and 12.16 μM, respectively. It was found that 12c had inhibitory effects on both EGFRWT and EGFRT790M isoforms, with inhibitory partialities of 37.50 and 148.90 nM, respectively. Additionally, 12c was found to be safer than erlotinib against normal cell lines (IC50 = 38.61 μM). Compound 12c induced early and late apoptosis in A549 cells and arrested cell growth at G1 and G2/M phases. 12c was also found to increase caspases 3 and 8 ratios. Molecular docking indicated the correct binding modes of the synthesized compounds. MD simulations, MM-GBSA, and PLIP studies confirmed the precise binding of 12c to the EGFR protein over 100 ns.  相似文献   

3.
Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1–4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53–79%) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.  相似文献   

4.
Abstract

Twenty-four compounds were isolated from the roots of Polygonatum cyrtonema Hua, including a new octopamine dimer, named trans-bis(N-feruloyl)octopamine (1). The structure was established on the basis of spectroscopic and chemical methods. All the extracts and compounds were evaluated for cytotoxic and antioxidant activities by using MTT and chemiluminescence assay. The extracts showed activity against MCF-7 and HepG-2 cell lines from IC50 0.30 to 1.01 mg mL?1. Compound 3 exhibited activity against HepG-2 cell lines with IC50 8.99?μM. Compound 7 exhibited activity against Hela cell lines with IC50 2.53?μM and BGC-823 cell lines with IC50 7.77?μM. Moreover, compound 7 showed antioxidant with IC50 12?µM compared to the positive control with IC50 77?µM. Compound 16 exhibited activity against HepG-2 cell lines with IC50 1.05?μM and MCF-7 cell lines with IC50 1.89?μM. These results indicated that this plant might be potential in natural medicine and healthy food.  相似文献   

5.
A series of 30 non-covalent imidazo[1,2-a]quinoxaline-based inhibitors of epidermal growth factor receptor (EGFR) were designed and synthesized. EGFR inhibitory assessment (against wild type) data of compounds revealed 6b, 7h, 7j, 9a and 9c as potent EGFRWT inhibitors with IC50 values of 211.22, 222.21, 193.18, 223.32 and 221.53 nM, respectively, which were comparable to erlotinib (221.03 nM), a positive control. Furthermore, compounds exhibited excellent antiproliferative activity when tested against cancer cell lines harboring EGFRWT; A549, a non-small cell lung cancer (NSCLC), HCT-116 (colon), MDA-MB-231 (breast) and gefitinib-resistant NSCLC cell line H1975 harboring EGFRL858R/T790M. In particular, compound 6b demonstrated significant inhibitory potential against gefitinib-resistant H1975 cells (IC50 = 3.65 μM) as compared to gefitinib (IC50 > 20 μM). Moreover, molecular docking disclosed the binding mode of the 6b to the domain of EGFR (wild type and mutant type), indicating the basis of inhibition. Furthermore, its effects on redox modulation, mitochondrial membrane potential, cell cycle analysis and cell death mode in A549 lung cancer cells were also reported.  相似文献   

6.
Based on the considerable features of the multicomponent reactions (MCRs) in the field of organic and medicinal chemistry, the present work was designed to synthesize a new series of imidazole, pyridine, and pyrimidine derivatives using MCRs to obtain new anti-proliferative agent beside exploration of their interaction mechanism by molecular docking technique. MCRs of furochromone carbaldehyde 1 , benzoin, and ammonium acetate afforded the corresponding 2,4,5-trisubstituted imidazole 2 . However, MCRs of 1 with benzoin, amine derivatives, and ammonium acetate yielded the corresponding 1,2,4,5-tetrasubstituted imidazole 3a,b . In addition, pyridine 4a,b-5a,b and pyrimidine derivatives 6a,d were synthesized via condensation of 1 with different carbonyl compounds and ammonium acetate or benzyl urea, respectively. The in-vitro anti-Proliferative activities of the new furochromone derivatives were screened toward MCF-7 and HepG-2 cancer cell lines as well as the normal cell line (human normal melanocyte, HFB4) in comparison to the known anticancer drugs: 5-fluorouracil and doxorubicin using MTT assay. Compounds 5a and 5b revealed effective anti-proliferative activity against MCF-7 cell lines with IC 50 18 and 22 μg/mL, respectively, compared to 5-fluorouracil (IC 50 of 13 μg/mL). However, compounds 6a-d exhibited potent activity against HepG-2 cancer cell lines of IC 50 ranging from 18 to 20 μg/mL compared to doxorubicin (IC 50 of 14 μg/mL). Moreover, the binding mode of the most active furochromones 5a,b and 6a-d inside the active site of the epidermal growth factor receptor (EGFR) kinase enzyme (PDB ID: 5CAV) were studied using molecular docking technique. Compounds 6b,c showed excellent docking results compared to the known EGFR inhibitors ( 4ZQ ).  相似文献   

7.
A library of bile-acid-appended triazolyl aryl ketones was synthesized and characterized by detailed spectroscopic techniques such as 1H and 13C NMR, HRMS and HPLC. All the synthesized conjugates were evaluated for their cytotoxicity at 10 µM against MCF-7 (human breast adenocarcinoma) and 4T1 (mouse mammary carcinoma) cells. In vitro cytotoxicity studies on the synthesized conjugates against MCF-7 and 4T1 cells indicated one of the conjugate 6cf to be most active against both cancer cell lines, with IC50 values of 5.71 µM and 8.71 µM, respectively, as compared to the reference drug docetaxel, possessing IC50 values of 9.46 µM and 13.85 µM, respectively. Interestingly, another compound 6af (IC50 = 2.61 µM) was found to possess pronounced anticancer activity as compared to the reference drug docetaxel (IC50 = 9.46 µM) against MCF-7. In addition, the potent compounds (6cf and 6af) were found to be non-toxic to normal human embryonic kidney cell line (HEK 293), as evident from their cell viability of greater than 86%. Compound 6cf induces higher apoptosis in comparison to 6af (46.09% vs. 33.89%) in MCF-7 cells, while similar apoptotic potential was observed for 6cf and 6af in 4T1 cells. The pharmacokinetics of 6cf in Wistar rats showed an MRT of 8.47 h with a half-life of 5.63 h. Clearly, these results suggest 6cf to be a potential candidate for the development of anticancer agents.  相似文献   

8.
A novel series of imidazo[1,2-a]pyridine based 1H-1,2,3-triazole derivatives were designed, synthesized, and evaluated for their anticancer activity against two different human cancer cell lines. Most of the synthesized compounds displayed anticancer activity with IC50 values from 2.35 to 120.46 μM. Furthermore, compounds 9b , 9c, 9d, 9f , and 9j showed potent inhibitory activity against cancer cell lines, with IC50 values close to that of standard drug. It is important to note that compound 9d was more potent than the standard drug cisplatin with IC50 values of 10.89 and 2.35 μM against Hela cell line and MCF-7 cell line, respectively.  相似文献   

9.
Biologically important three different pharmacophores, forskolin, indole and 1,2,3-triazoles are coupled to obtain a hybrid molecule. Here, we described the synthesis of novel series of forskolin-indole-triazole conjugates 5a-5l by using the Cu(I) catalyzed 1,3-dipolar cycloaddition reaction. Furthermore, the biological significance of the synthesized molecules was assessed by in silico and in vitro modes. All the synthesized compounds were evaluated for in vitro anticancer activity against PC-3, MCF-7, MDA-MB-231, COLO-205, HeLa, WRL-68, RAJI, CHANG and RAW-264.7 cell lines. Compound 5g was found to be the most potent in all the tested cell lines (IC50 range 9.6–21.66 μg/ml, except COLO-205), 5a, 5b and 5k were observed to exert its effect only against WRL-68 (IC50 range 27.69–48.18 μg/ml), when compared to parent 3 (IC50 > 100 μg/ml, tested concentrations 10–50 μg/ml) and standard Doxorubicin (IC50 range 0.42–3.16 μg/ml). The most potent compound 5g (MEF50 0.57) was found non-toxic to human erythrocytes as compared to control (MEF50 0.60) at tested concentration (50 μg/ml). In silico-based succinate dehydrogenase inhibition showed that the synthesized compounds were having potent binding affinity compared to forskolin. Predictive ADMET and toxicity risk assessment analysis revealed that most of the compounds were complying with the standard limit of Lipinski's rule of five for oral bioavailability.  相似文献   

10.
Lung cancer is one of the most commonly occurring cancer mortality worldwide. The epidermal growth factor receptor (EGFR) plays an important role in cellular functions and has become the new promising target. Natural products and their derivatives with various structures, unique biological activities, and specific selectivity have served as lead compounds for EGFR. D-glucose and EGCG were used as starting materials. A series of glucoside derivatives of EGCG (7–12) were synthesized and evaluated for their in vitro anticancer activity against five human cancer cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW480. In addition, we investigated the structure-activity relationship and physicochemical property–activity relationship of EGCG derivatives. Compounds 11 and 12 showed better growth inhibition than others in four cancer cell lines (HL-60, SMMC-7721, A-549, and MCF), with IC50 values in the range of 22.90–37.87 μM. Compounds 11 and 12 decreased phosphorylation of EGFR and downstream signaling protein, which also have more hydrophobic interactions than EGCG by docking study. The most active compounds 11 and 12, both having perbutyrylated glucose residue, we found that perbutyrylation of the glucose residue leads to increased cytotoxic activity and suggested that their potential as anticancer agents for further development.  相似文献   

11.
4‐Heteroaryl or heteroalkyl–quinazoline derivatives were prepared as dual epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor‐2 (VEGFR‐2) inhibitors. The new compounds were tested for their dual enzyme inhibition as well as their cytotoxic activity on MCF7 cell line. The results indicated that almost all the compounds showed moderate dual inhibition of both enzymes. Compound 3 (methyl piperidine‐4‐carboxylate derivative) showed the highest inhibitory activity against both enzymes with IC50 97.6 and 64.0 µM against EGFR and VEGFR‐2 kinases, respectively. Most of the test compounds showed potent to moderate antitumor activity on MCF7 cell line. Five compounds ( 3 , 9c , 11 , 13 , and 15b ) showed potent cytotoxic activity with IC50 values between 10 and 17 µM .  相似文献   

12.
The growing risk of antimicrobial resistance besides the continuous increase in the number of cancer patients represents a great threat to global health, which requires intensified efforts to discover new bioactive compounds to use as antimicrobial and anticancer agents. Thus, a new set of pyridothienopyrimidine derivatives 2a,b–9a,b was synthesized via cyclization reactions of 3-amino-thieno[2,3-b]pyridine-2-carboxamides 1a,b with different reagents. All new compounds were evaluated against five bacterial and five fungal strains. Many of the target compounds showed significant antimicrobial activity. In addition, the new derivatives were further subjected to cytotoxicity evaluation against HepG-2 and MCF-7 cancer cell lines. The most potent cytotoxic candidates (3a, 4a, 5a, 6b, 8b and 9b) were examined as EGFR kinase inhibitors. Molecular docking study was also performed to explore the binding modes of these derivatives at the active site of EGFR-PK. Compounds 3a, 5a and 9b displayed broad spectrum antimicrobial activity with MIC ranges of 4–16 µg/mL and potent cytotoxic activity with IC50 ranges of 1.17–2.79 µM. In addition, they provided suppressing activity against EGFR with IC50 ranges of 7.27–17.29 nM, higher than that of erlotinib, IC50 = 27.01 nM.  相似文献   

13.
《合成通讯》2012,42(1):71-84
Abstract

A series of amide derivatives of azaindole-oxazoles (11a-n) were designed and synthesized and their structures were confirmed by 1HNMR, 13CNMR and mass spectral analysis. Further, these derivatives were screened for their anticancer activity against human cancer cell lines viz; MCF7 (breast), A549 (lung) and A375 (melanoma). In vitro anticancer activity screening indicated that most of the hybrids exhibited potent inhibitory activities in a variety of cancer cell lines. Among the compounds 11d, 11e, 11f, 11j, 11k, 11l, 11m, and 11n were exhibited more potent activity than standard, in those mainly two compounds 11m and 11j were exhibited excellent activity in MCF-7 cell line with IC50 values 0.034 and 0.036?µM. Moreover, all these compounds were carried out their molecular docking studies on EGFR receptor results indicated that two potent compounds 11m and 11j were strongly binds to protein EGFR (PDB ID: 4hjo). It was found that the energy calculations were in good agreement with the observed IC50 values.  相似文献   

14.
Novel PARP inhibitors with selective mode-of-action have been approved for clinical use. Herein, oxadiazole based ligands that are predicted to target PARP-1 have been synthesized and screened for the loss of cell viability in mammary carcinoma cells, wherein seven compounds were observed to possess significant IC50 values in the range of 1.4 to 25 µM. Furthermore, compound 5u, inhibited the viability of MCF-7 cells with an IC50 value of 1.4µM, when compared to Olaparib (IC50 = 3.2 µM). Compound 5s also decreased cell viability in MCF-7 and MDA-MB-231 cells with IC50 values of 15.3 and 19.2 µM, respectively. Treatment of MCF-7 cells with compounds 5u and 5s produced PARP cleavage, H2AX phosphorylation and CASPASE-3 activation comparable to that observed with Olaparib. Compounds 5u and 5s also decreased foci-formation and 3D Matrigel growth of MCF-7 cells equivalent to or greater than that observed with Olaparib. Finally, in silico analysis demonstrated binding of compound 5s towardsthe catalytic site of PARP-1, indicating that these novel oxadiazoles synthesized herein may serve as exemplars for the development of new therapeutics in cancer.  相似文献   

15.
With the expectation of finding new and effective antitumor drugs, a series of novel N-(1H-benzo[d]imidazole-2-yl)-benzamide/benzenesulfonamide derivatives of dehydroabietic acid were synthesized and evaluated for cytotoxic activity against three human cancer cell lines (MCF-7, HeLa, and HepG2 cells) and one human normal hepatocyte cell line (LO2). As a result, a number of derivatives showed moderate to good antitumor activities. Among them, compound 8h exhibited the most potent activities against three cancer cell lines with IC50 values of 0.87 ± 0.18, 9.39 ± 0.72, and 8.31 ± 0.64 μM, respectively, and was less active to normal hepatocyte LO2 cells. Further mechanism studies revealed that compound 8h could arrest the cell cycle of MCF-7 cells at S phase and induce the apoptosis of MCF-7 cells in ROS-mediated mitochondrial pathway.  相似文献   

16.
A new series of benzotriazole moiety bearing substituted imidazol-2-thiones at N1 has been designed, synthesized and evaluated for in vitro anticancer activity against the different cancer cell lines MCF-7(breast cancer), HL-60 (Human promyelocytic leukemia), and HCT-116 (colon cancer). Most of the benzotriazole analogues exhibited promising antiproliferative activity against tested cancer cell lines. Among all the synthesized compounds, BI9 showed potent activity against the cancer cell lines such as MCF-7, HL-60 and HCT-116 with IC50 3.57, 0.40 and 2.63 µM, respectively. Compound BI9 was taken up for elaborate biological studies and the HL-60 cells in the cell cycle were arrested in G2/M phase. Compound BI9 showed remarkable inhibition of tubulin polymerization with the colchicine binding site of tubulin. In addition, compound BI9 promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2. These results provide guidance for further rational development of potent tubulin polymerization inhibitors for the treatment of cancer.  相似文献   

17.
A new series of acridine-9-carboxamide-1,2,3-triazole derivatives 7a-m were designed, synthesized, and evaluated as novel α-glucosidase inhibitors. Acridine-9-carboxamide-1,2,3-triazole scaffold has been designed by combination of effective moieties from potent α-glucosidase inhibitors. Most of the synthesized compounds were more potent than standard inhibitor acarbose. Among the title compounds, the most potent compounds were compounds 7j , 7k , and 7a with IC50 values of 120.2 ± 1.0, 151.1 ± 1.4, and 157.6 ± 1.6 μM, respectively (IC50 value of acarbose = 750.0 ± 10.0 μM). Docking study of the most potent compounds demonstrated that these compounds formed stable complexes with α-glucosidase active site. Anti-α-amylase assay of compounds 7j , 7k , and 7a was performed and no activity was observed. in vitro cytotoxicity assay of the latter compounds revealed that these compounds were not cytotoxic toward human normal (HDF) and cancer (MCF-7) cell lines. ADME and toxicity prediction of compounds 7j , 7k , and 7a were also performed.  相似文献   

18.
A series of novel quinoline-based tetracyclic ring-systems were synthesized and evaluated in vitro for their antiplasmodial, antiproliferative and antimicrobial activities. The novel hydroiodide salts 10 and 21 showed the most promising antiplasmodial inhibition, with compound 10 displaying higher selectivity than the employed standards. The antiproliferative assay revealed novel pyridophenanthridine 4b to be significantly more active against human prostate cancer (IC50 = 24 nM) than Puromycin (IC50 = 270 nM) and Doxorubicin (IC50 = 830 nM), which are used for clinical treatment. Pyridocarbazoles 9 was also moderately effective against all the employed cancer cell lines and moreover showed excellent biofilm inhibition (9a: MBIC = 100 µM; 9b: MBIC = 100 µM).  相似文献   

19.
In this paper, we describe the synthesis of some new quinoxaline-piperazine-oxazole amide conjugates 6a-n from 3-chloroquinoxaline-2-carbonitrile using well-known reaction sequences. The synthesized compounds were characterized by 1H NMR,13C NMR, and mass spectral analysis. The compounds were tested for their in vitro antiproliferative activity toward four different cancer cell lines such as PC-3, MCF-7, DU-145, and A-549 by MTT method. The compounds, 6c, 6h, 6i , and 6n were found to be more potent than the standard Erlotinib. In vitro tyrosine kinase EGFR inhibition studies using four potent compounds revealed that 6n has double inhibiting tendency with value IC50 of 0.22 μM and 6h with value of IC50 0.27 μM compared to reference compound. Molecular docking studies of active compounds, 6c , 6h , 6i , and 6n on EGFR receptor suggested that all the compounds have more binding energies than that of Erlotinib. Furthermore, the in silico pharmacokinetic profile was accomplished for the active compounds, 6c , 6h , 6i , and 6n using SWISS/ADME and pk CSM, whereas compounds, 6h , 6i , and 6c followed Lipinski rule, Veber rule, Egan rule and Muegge rule. The remaining compound 6n did not follow Lipinski rule, Ghose rule because one common violation, that is, because of high molecular weight (MW > 350).  相似文献   

20.
A mild and versatile method based on Cu-catalyzed [2+3] cycloaddition (Huisgen-Meldal-Sharpless reaction) was developed to tether 3,3’-((4-(prop-2-yn-1-yloxy)phenyl)methylene)bis(4-hydroxyquinolin-2(1H)-ones) with 4-azido-2-quinolones in good yields. This methodology allowed attaching three quinolone molecules via a triazole linker with the proposed mechanism. The products are interesting precursors for their anti-proliferative activity. Compound 8g was the most active one, achieving IC50 = 1.2 ± 0.2 µM and 1.4 ± 0.2 µM against MCF-7 and Panc-1 cell lines, respectively. Moreover, cell cycle analysis of cells MCF-7 treated with 8g showed cell cycle arrest at the G2/M phase (supported by Caspase-3,8,9, Cytochrome C, BAX, and Bcl-2 studies). Additionally, significant pro-apoptotic activity is indicated by annexin V-FITC staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号