首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《化学:亚洲杂志》2018,13(15):1906-1910
A unique example of a ring‐to‐cage structural conversion in a multinuclear gold(I) coordination system with d ‐penicillamine (d ‐H2pen) is reported. The reaction of [Au2Cl2(dppe)] (dppe=1,2‐bis(diphenylphosphino)ethane) with d ‐H2pen in a 1:1 ratio gave [Au4(dppe)2(d ‐pen)2] ([ 1 ]), in which two [Au2(dppe)]2+ units are linked by two d ‐pen S atoms in a cyclic form so as to have two bidentate‐N,O coordination arms. The subsequent reaction of [ 1 ] with Cu(OTf)2 afforded [Au4Cu(dppe)2(d ‐pen)2]2+ ([ 2 ]2+), in which a CuII ion is chelated by the two coordination arms in [ 1 ] to form an AuI4CuII bicyclic metallocage. A similar reaction using Cu(NO3)2 was accompanied by the ring expansion of [ 1 ] to [Au8(dppe)4(d ‐pen)4], leading to the production of [Au8Cu2(dppe)4(d ‐pen)4]4+ ([ 3 ]4+). In [ 3 ]4+, two CuII ions are each chelated by the two coordination arms to form an AuI8CuII2 tricyclic metallocage, accommodating a nitrate ion. The use of Ni(NO3)2 or Ni(OAc)2 instead of Cu(NO3)2 commonly gave a tricyclic metallocage of [Au8Ni2(dppe)4(d ‐pen)4]4+ ([ 4 ]4+), but a water molecule was accommodated inside the AuI8NiII2 metallocage.  相似文献   

2.
A diamagnetic AuI4CoIII2 hexanuclear complex, [Au4Co2(dppe)2(l ‐nmc)4]2+ ([ 1L ‐ nmc ]2+; dppe=1,2‐bis(diphenylphosphino)ethane, l ‐H2nmc=N‐methyl‐l ‐cysteine), was newly synthesized by the reaction of [Co(l ‐nmc)2]? with [Au2Cl2(dppe)] and crystallized with different inorganic anions (X=ClO4?, NO3?, Cl?, SO42?) to produce ionic solids ([ 1L ‐ nmc ]Xn). Single‐crystal X‐ray analysis revealed that all the solids crystallize in the chiral space group F432 with a face‐centered‐cubic lattice structure consisting of supramolecular octahedra of complex cations. The paramagnetic nature of all the solids was evidenced by magnetic susceptibility measurements, showing the variation of the oxidation states of two cobalt centers in [ 1L ‐ nmc ]n+ from CoII1.00CoIII1.00 for X=ClO4? or NO3? to CoII0.67CoIII1.33 for X=Cl?, via CoII0.83CoIII1.17 for X=SO42?. The difference in the CoII/III mixed‐valences was explained by the difference in sizes and charges of counter anions accommodated in lattice interstices with a fixed volume.  相似文献   

3.
A novel AuICoIII coordination system that is derived from the newly prepared [Co(D ‐nmp)2] ( 1 ; D ‐nmp=N‐methyl‐D ‐penicillaminate) and a gold(I) precursor AuI is reported. Complex 1 acts as a sulfur‐donating metallaligand and reacts with the gold(I) precursor to give [Au2Co2(D ‐nmp)4] ( 2 ), which has an eight‐membered AuI2CoIII2 metallaring. Treatment of 2 with [Au2(dppe)2]2+ (dppe=1,2‐bis(diphenylphosphino)ethane) leads to the formation of [Au4Co2(dppe)2(D ‐nmp)4]2+ ( 3 2+), which consists of an 18‐membered AuI4CoIII2 metallaring that accommodates a tetrahedral anion (BF4, ClO4, ReO4). In solution, the metallaring structure of 3 2+ is readily interconvertible with the nine‐membered AuI2CoIII metallaring structure of [Au2Co(dppe)(D ‐nmp)2]+ ( 4 +); this process depends on external factors, such as solvent, concentration, and nature of the counteranion. These results reveal the lability of the Au S and Au P bonds, which is essential for metallaring expansion and contraction.  相似文献   

4.
A novel AuICoIII coordination system that is derived from the newly prepared [Co(D ‐nmp)2]? ( 1 ?; D ‐nmp=N‐methyl‐D ‐penicillaminate) and a gold(I) precursor AuI is reported. Complex 1 ? acts as a sulfur‐donating metallaligand and reacts with the gold(I) precursor to give [Au2Co2(D ‐nmp)4] ( 2 ), which has an eight‐membered AuI2CoIII2 metallaring. Treatment of 2 with [Au2(dppe)2]2+ (dppe=1,2‐bis(diphenylphosphino)ethane) leads to the formation of [Au4Co2(dppe)2(D ‐nmp)4]2+ ( 3 2+), which consists of an 18‐membered AuI4CoIII2 metallaring that accommodates a tetrahedral anion (BF4?, ClO4?, ReO4?). In solution, the metallaring structure of 3 2+ is readily interconvertible with the nine‐membered AuI2CoIII metallaring structure of [Au2Co(dppe)(D ‐nmp)2]+ ( 4 +); this process depends on external factors, such as solvent, concentration, and nature of the counteranion. These results reveal the lability of the Au? S and Au? P bonds, which is essential for metallaring expansion and contraction.  相似文献   

5.
A fast electrochemical technique for the discrimination of one- and two-electron mechanisms in the oxidative addition of alkylating agents (RX) to corrinato- and porphyrinatocobalt(I) ([CoIL]) is described. It is based on single-scan voltammograms of [CoIIL] in the presence of RX and variable amounts of the radical trap acrylonitrile. In the first part of the voltammogram, [CoIIL] is reduced, and fast oxidative addition of RX to [CoIL] is triggered. If the reaction proceeds via a two-electron mechanism, [R CoIIIL] is formed independently of acrylonitrile concentration, but if a transient free radical R is involved, R is competitively trapped by acrylonitrile and [CoIIL] to yield, at high enough acrylonitrile concentration, exclusively the olefin-inserted [RCN CoIIIL]. [RCN CoIIIL] is reducible in the intermediate potential range, [R CoIIIL] at the negative end of the single-scan voltammogram. Hence, from the appearance of the reduction waves due to [RCN CoIIIL] and [R CoIIIL], the mechanism of oxidative addition of RX to [CoIL] is easily deduced. The method is applied to the study of the mechanistic borderline of oxidative addition using a series of 15 RX and 4 [CoL]'s, i.e. cobalamin (Cbl), heptamethyl cobyrinate (‘Cby’), (tetraphenylporphyrinato) cobalt ([Co(tpp])), and (octaethylporphyrinato) cobalt ([Co(oep)]). All non-activated primary alkyl iodides and bromides exhibit, at room temperature, pure two-electron mechanisms with all [CoIL]'s, except neopentyliodide with Cb1I and ‘Cby’I. All secondary alkyl iodides involve free radicals with Cb1I and ‘Cby’I, but a pure two-electron mechanism or a mixed one-electron two-electron mechanism with [CoI(tpp)] and [CoI(oep)]. The mechanistic switch from a two-electron to a one-electron mechanism for increasingly sterically demanding RX's occurs earlier with the supernucleophilic Cb1I and ‘Cby’I than with [CoI(tapp)] and [CoI(oep)].  相似文献   

6.
In this work, the differences in catalytic performance for a series of Co hydrogen evolution catalysts with different pentadentate polypyridyl ligands (L), have been rationalized by examining elementary steps of the catalytic cycle using a combination of electrochemical and transient pulse radiolysis (PR) studies in aqueous solution. Solvolysis of the [CoII−Cl]+ species results in the formation of [CoII4-L)(OH2)]2+. Further reduction produces [CoI4-L)(OH2)]+, which undergoes a rate-limiting structural rearrangement to [CoI5-L)]+ before being protonated to form [CoIII−H]2+. The rate of [CoIII−H]2+ formation is similar for all complexes in the series. Using E1/2 values of various Co species and pKa values of [CoIII−H]2+ estimated from PR experiments, we found that while the protonation of [CoIII−H]2+ is unfavorable, [CoII−H]+ reacts with protons to produce H2. The catalytic activity for H2 evolution tracks the hydricity of the [CoII−H]+ intermediate.  相似文献   

7.
Herein, a unique coordination system that exhibits multiple chiral inversions and molecular dimerization in response to a subtle pH change is reported. Treatment of (Δ)2‐H3[Au3Co2(L ‐cys)6] (H3[ 1 a ]) with [Co3(aet)6](NO3)3 (aet=2‐aminoethanethiolate) in water at pH 7 gave a 1:1 complex salt of [Co3(aet)6]3+ and [ 1 a ]3?, retaining the AuI3CoIII2 structure and chiral configurations of [ 1 a ]3?. Similar treatment at pH 9 led to not only the inversion of all of the chiral CoIII and S centers but also the dimerization of [ 1 a ]3?, giving a 2:1 complex salt of [Co3(aet)6]3+ and (Λ)4(R)12‐[Au6Co4(L ‐cys)12]6? ([ 2 ]6?). When dissociated from [Co3(aet)6]3+ in solution, [ 2 ]6? was converted to (Λ)2(R)6‐[Au3Co2(L ‐cys)6]3? ([ 1 b ]3?) with retention of the chiral configurations.  相似文献   

8.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

9.
Summary 2-Acetylpyridine N(4)-dihexyl- and N(4)-dicyclohexylthiosemicarbazone, HAc4DHex and HAc4DCHex, respectively, and FeIII, CoII, CoIII, NiII, CuII and ZnII complexes have been prepared and characterized by molar conductivities, magnetic susceptibilities and spectroscopic techniques. For many of the complexes, loss of the N(2)H hydrogen occurs, and the ligands coordinate to the metal centres as NNS monoanionic, tridentate ligands, e.g., [M(NNS)X] (M = CoII, NiII, CuII, NNS = Ac4DHex or Ac4DCHex and X = Cl or Br), [Fe(NNS)2]ClO4, [Co(NNS)2]BF4, [Cu(NNS)NO3] and [Zn(NNS)OAc]. ZnII ion is also chelated by neutral ligands in [Zn(HNNS)X2] (X = Cl, Br). In addition, [Ni(Ac4DHex)-(HAc4DHex)]X (X = BF4, ClO4) and [Ni(HAc4DCHex)2]-(BF4)2 are reported where the neutral thiosemicarbazone is coordinated via the pyridyl nitrogen, azomethine nitrogen and thione sulfur. Crystal structure determinations of HAc4DCHex and [Cu(Ac4DHex)Br] show the former to contain the bifurcated hydrogen bonded form and the latter to be planar with no significant interaction between neighbouring centres.  相似文献   

10.
By self‐assembly of a Salamo‐type ligand H2L [H2L = 1,2‐bis(3‐methoxysalicylideneaminooxy)ethane] with Ni(OAc)2 · 4H2O, Ce(NO3)3 · 6H2O, and H2bdc (H2bdc = terephthalic acid), a novel NiII‐CeIII heterometallic complex, [{Ni(L)Ce(NO3)2(CH3OH)(DMF)}2(bdc)], was obtained. Two crystallographically equivalent [Ni(L)Ce(NO3)2(CH3OH)(DMF)] moieties lie in the inversion center, and are linked by one bdc2– ligand leading to a heterotetranuclear dimer, in which the carboxylato group bridges the NiII and CeIII atoms. Moreover, the photophysical properties of the NiII‐CeIII complex were studied.  相似文献   

11.
Heterometallic complexes with pyridine-N-oxide (PyO), Ru(NO)(NO2)4(OH)Ni(PyO)2(H2O)] · CH3COCH3 (I), [{Ru(NO)(NO2)2(μ-NO2)2(μ-OH)Co}2(μ-PyO)] · H2O · CH3COCH (II), and [Ru(NO)(NO2)4(OH)Cu(PyO)2 (III), are isolated in the reactions of Na2[Ru(NO)(NO2)4(OH)] with nitrates of the corresponding metals in the presence of the organic ligand. The compounds synthesized are characterized by IR spectra, thermal analysis, and X-ray diffraction analysis. Depending on the M2+ cation, the ruthenium cation is coordinated through the bidentate (III, Cu2+) or tridentate (I, Ni2+ and II, CO2+) mode involving the bridging OH group and one or two NO2 groups. The thermal decomposition of complex II results in the formation of a Co0.5Ru0.5 solid solution, which is thermodynamically stable under the decomposition conditions. The thermolysis of complexes I and III in a hydrogen atmosphere leads to the formation of metastable solid solutions.  相似文献   

12.
CoII and CoIII complexes containing nitrite and tridentate aromatic amine compounds [bis(6-methyl-2-pyridylmethyl)amine (Me2bpa) and bis(2-pyridylmethyl)amine (bpa)] have been prepared as models of the catalytic center in Co-substituted nitrite reductase: [CoII(Me2bpa)(NO2)Cl]2 · acetone (2), CoII(Me2bpa)(NO2)2 (3), CoII(bpa)(NO2)Cl (4), CoII(bpa)(NO2)2 (5), CoIII(Me2bpa)(NO2)(CO3) (6), and CoIII(bpa)(NO2)3 (7). The X-ray crystal structure analyses of these CoII and CoIII complexes indicated that the geometries of the cobalt centers are distorted octahedral and the Me2bpa and bpa with three nitrogen donors exhibit mer- (2, 3, and 7) and fac-form (4 and 6). The coordination mode of nitrite depends on the cobalt oxidation state, to CoII through the oxygen (nitrito coordination, O- and O,O-coordination) and to CoIII through nitrogen (nitro coordination, N-coordination mode). These findings are consistent with the results of their IR spectra, except that another oxygen of the O-coordinated nitrito group in 3 might interact weakly with CoII according to its IR spectrum. Reductions of the nitrite in 2, 3, 4, and 5 to nitrogen monoxide were not accelerated in the presence of proton, perhaps due to the nitrito coordination in these CoII complexes.  相似文献   

13.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

14.
A known trinuclear structure was used to design the heterobimetallic mixed-valent, mixed-ligand molecule [CoII(hfac)3−Na−CoIII(acac)3] ( 1 ). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3−Na−FeIII(acac)3] ( 2 ) and [NiII(hfac)3−Na−CoIII(acac)3] ( 3 ) via isovalent site-specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple-wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of 2 and 3 are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform 1 exhibits flexibility in accommodating a variety of di- and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4 functional oxide materials.  相似文献   

15.
A known trinuclear structure was used to design the heterobimetallic mixed‐valent, mixed‐ligand molecule [CoII(hfac)3?Na?CoIII(acac)3] ( 1 ). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3?Na?FeIII(acac)3] ( 2 ) and [NiII(hfac)3?Na?CoIII(acac)3] ( 3 ) via isovalent site‐specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple‐wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of 2 and 3 are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform 1 exhibits flexibility in accommodating a variety of di‐ and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4 functional oxide materials.  相似文献   

16.
Treatment of (NH4)[Au(D‐Hpen‐S)2](D‐H2pen = D‐penicillamine) with CoCl2·6H2O in an acetate buffer solution, followed by air oxidation, gave neutral AuICoIII and anionic AuI3CoIII2 polynuclear complexes, [Au3Co3(D‐pen‐N,O,S)6]([ 1 ]) and [Au3Co2(D‐pen‐N,S)6]3? ([ 2 ]3?), which were separated by anion‐exchange column chromatography. Complexes [ 1 ] and [ 2 ]3? each formed a single isomer, and their structures were determined by single‐crystal X‐ray crystallography. In [ 1 ], each of three [Au(D‐pen‐S)2]3?metalloligands coordinates to two CoIII ions in a bis‐tridentate‐N,O,S mode to form a cyclic AuI3CoIII3 hexanuclear structure, in which three [Co(D‐pen‐N,O,S)2]? octahedral units and six bridging S atoms adopt trans(O) geometrical and R chiral configurations, respectively. In [ 2 ]3?, each of three [Au(D‐pen‐S)2]3? metalloligands coordinates to two CoIII ions in a bis‐bidentate‐N,S mode to form a AuI3CoIII2 pentanuclear structure, in which two [Co(D‐pen‐N,S)3]3? units and six bridging S atoms adopt ∧ and R chiral configurations, respectively.  相似文献   

17.
The kinetics of oxidation of the ternary complexes [CoII(ADA)(Su)(H2O)]2? and [CoII(ADA)(Ma)(H2O)]2? (ADA?=?N-(2-acetamido)iminodiacetate, Su?=?succinate and Ma?=?maleate) by periodate have been investigated spectrophotometrically at 580?nm under pseudo-first-order conditions in aqueous medium over 30?C50?°C range, pH 3.72?C4.99, and I?=?0.2?mol?dm?3. The kinetics of the oxidation of [CoII(ADA)(Su)(H2O)]2? obeyed the rate law d[CoIII]/dt?=?[CoII(ADA)(Su)(H2O)]2?[H5IO6] {k 4 K 5?+?(k 5 K 6 K 2/[H+)}, and the kinetics oxidation of [CoII(ADA)(Ma)(H2O)]2? obeyed the rate law d[CoIII]/dt?=?k 1 K 2[CoII] T [IVII] T /{1?+?([H+]/K 7)?+?K 2[IVII] T }. The pseudo-first-order rate constant, k obs, increased with increasing pH, indicating that the hydroxo form of maleate complex, [CoII(ADA)(Ma)(OH)]3?, is the reactive species. The initial Co(III) products were slowly converted to the final products, fitting an inner-sphere mechanism. Thermodynamic activation parameters were calculated using the transition state theory equation. The initial cobalt(II) complexes were characterized by physicochemical and spectroscopic methods.  相似文献   

18.
Summary Magnetic susceptibilities of the biacetyldihydrazone (BdH) complexes [M(BdH)3](NO3)2 (M = CoII, NiII, CuII or ZnII), [Fe(BdH)3](NO3)3, [M(BdH)3](Ni(dto)2] (M = CoII, NiII or ZnII; dto = dithiooxalate), [(BdH)2Cu(dto)Ni(dto)] and [Fe(BdH)3]2[Ni(dto)2]3 have been studied in the 4.2–295 K range. ZnII complexes are diamagnetic, and complexes of NiII, CuII and FeIII obey the Curie-Weiss law. The CoII complexes behave anomalously and the results are interpreted in terms of a high spinlow spin equilibrium.  相似文献   

19.
Summary The reaction between chromone-3-carboxaldehyde-4-phenylthiosemicarbazone (HCPT) and some hydrated metal salts of CoII, NiII and CuII give complexes of the type [Cu(HCPT)Cl2],[Cu(CPT)BrH2O],[Cu(CPT)2]·2H2O, [Ni(CPT)2(H2O)2]·2H2O, [Co(CPT)2(OAc)] and [Co(CPT)2(H2O)2]X·2H2O (where X=Cl or Br). The metal complexes were characterized by elemental analyses, molar conductivities, and spectal (i.r. and visible) and magnetic studies. I.r. spectra show that the HCPT coordinates in the thione or thiol form and behaves in a bidentate manner. Also, HCPT behaves as an oxidizing agent towards CoII forming diamagnetic CoIII complexes. An octahedral structure is proposed for both CoIII and NiII complexes, while a square-planar structure is proposed for CuII complexes on the basis of magnetic and spectral measurements.  相似文献   

20.
The octahedral complex, [CoIII(HL)]·9H2O (H4L = (1,8)-bis(2-hydroxybenzamido)-3,6-diazaoctane) incorporating bis carboxamido-N-, bis sec-NH, phenolate, and phenol coordination has been synthesized and characterized by analytical, NMR (1H, 13C), e.s.i.-Mass, UV–vis, i.r., and Raman spectroscopy. The formation of the complex has also been confirmed by its single crystal X-ray structure. The cyclic voltammetry of the sample in DMF ([TEAP] = 0.1 mol dm−3, TEAP = tetraethylammonium perchlorate) displayed irreversible redox processes, [CoIII(HL)] → [CoIV(HL)]+ and [CoIII(HL)] → [CoII(HL)] at 0.41 and −1.09 V (versus SCE), respectively. A slow and H+ mediated isomerisation was observed for the protonated complex, [CoIII(H2L)]+ (pK = 3.5, 25 °C, I = 0.5 mol dm−3). H2Asc was an efficient reductant for the complex and the reaction involved outer sphere mechanism; the propensity of different species for intra molecular reduction followed the sequence: [{[CoIII(HL)],(H2Asc)}–H] <<< {[CoIII(H2L)],(H2Asc)}+ < {[CoIII(HL)],(H2Asc)}. A low value (ca. 3.7 × 10−10 dm3 mol−1 s−1, 25 °C, I = 0.5 mol dm−3) for the self exchange rate constant of the couple [CoIII(HL)]/[CoII(HL)] indicated that the ligand HL3− with amido (N-) donor offers substantial stability to the CoIII state. HSO3 and [CoIII(HL)] formed an outer sphere complex {[CoIII(HL)],(HSO3)}, which was slowly transformed to an inner sphere S-bonded sulfito complex, [CoIII(H2L)(HSO3)] and the latter was inert to reduction by external sulfite but underwent intramolecular SIV → CoIII electron transfer very slowly. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号