首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of β-aminocrotonamide ( 1 ) with succinic anhydride gave β-succinaminocrotonamide ( 3a ), which was treated with base to cyclize to 3,4-dihydro-6-methyl-4-oxo-2-pyrimidinepropanoic acid ( 4a ). Similarly, pyrimidinepentanoic acid derivative 4b was prepared from compound 1 and glutaric anhydride. Reaction of compound 1 with glutarate, adipate, and phthalate gave the corresponding pyrimidines 4b, 4c and 4d , while reaction of compound 1 with malonate gave 2-hydroxypyridine derivative 11 and dimethylpyrimidinone 4e . Reaction of dimethyl fumarate with compound 1 in the presence of methoxide gave a poor yield of pyrrolo[3,4-c]pyridine derivative 13 .  相似文献   

2.
This paper describes the synthesis and chemical properties of some 2- and 3-substituted furo[2,3-b]pyridines. Reaction of ethyl 2-chloronicotinate 1 with sodium ethoxycarbonylmethoxide or 1-ethoxycarbonyl-1-ethoxide gave β-keto ester 2 or ketone 5 , respectively. Ketonic hydrolysis of 2 afforded ketone 3, from which furo[2,3-b]pyridine 4 was obtained by the method of Sliwa. While, 2-methyl derivative 7 was prepared from 5 by reduction, O-acetylation and the subsequent pyrolysis. Reaction of ketone 3 with methyllithium gave tertiary alcohol 8 which was O-acetylated and pyrolyzed to give 3-methyl derivative 9 . Formylation of 4 , via lithio intermediate, with DMF yielded 2-formyl derivative 10 , from which 7 , was obtained by Wolff-Kishner reduction. Dehydration of the oxime 11 of 10 gave 2-cyano derivative 12 , which was hydrolyzed to give 2-carboxylic acid 13 . Reaction of 3-bromo compound 14 with copper(I) cyanide gave 3-cyano derivative 15 . Alkaline hydrolysis of 15 afforded compound 16 and 17 , while acidic hydrolysis gave carboxamide 18 . Reduction of 15 with DIBAL-H afforded 3-formyl derivative 19 . Wolff-Kishner reduction of 19 gave no reduction product 9 but hydrazone 20 . Reduction of tosylhydrazone 21 with sodium borohydride in methanol afforded 3-methoxymethylfuro[2,3-b]pyridine 22 .  相似文献   

3.
Alkylation of 3-methylpyrazole with 2-phenethyl p-toluenesulfonate gave 3-methyl-1-(2-phenethyl)pyrazole ( 2a ) and 5-methyl-1-(2-phenethyl)pyrazole ( 3a ) in low yield. Reaction of 5-chloro-1,3-dimethylpyrazole ( 5 ) with substituted-benzaldehydes afforded compounds 7 . Reduction of the latter afforded compound 2 in high yield. Compound 3 could be obtained from the reaction of substituted-2-(phenethyl)hydrazine hydrochloride 9 with acetoacetaldehyde dimethylacetal in moderate yield.  相似文献   

4.
Herein, the synthesis of nitrogen-containing heterocyclic scaffolds from heterocyclization of cyanoacetic acid hydrazide derivatives is described. Thiosemicarbazide derivative 1a undergoes base-mediated cyclization producing pyrazole derivative of type 2 . The triazolopyridine 5 was obtained by double cyclization of 1a and benzylidene malononitrile. Compound 1b condensed with ethyl chloroformate to furnish pyrazolooxazine 8 . Compound 1b was added to benzoyl isothiocyanate under thermal condition to form oxadiazine derivative 10 while, keeping the above reactant under room temperature to form acyclic derivative 11 . Using CS2 as a cyclizing agent for compound 1b yielded pyrazole derivative 13 . Treatment of 1b with I2 resulted in oxidative cyclization producing pyridazine derivative 14 . Compound 1c cyclized with benzoyl isothiocyanate forming triazolothiazine derivative 18 . While using cinnamoyl isothiocyanate, the acyclic product 22 was obtained. Compound 1c was condensed with formaldehyde leading to oxadiazole derivative 25 .  相似文献   

5.
6-Cyanomethylene ( 2 ), which was prepared via 1 by substitution with malononitrile, has been catalytically hydrogenated to the α-(aminomethylene)-9-(methoxymethyl)-9H-purine-6-acetonitrile ( 3 ) in good yield using N,N-dimethylformamide-benzene as solvent over Pd-C under medium pressure. Intermediate 3 was derived to aldehyde 5 by hydrolysis with acid or base. Substitution of 3 with amines gave the corresponding alkylamines 6 and 7 . Reaction of 3 with hydrazine and acetamidine hydrochloride gave pyrazole derivative 8 and pyrimidine derivative 9 , respectively.  相似文献   

6.
Reaction of diazoindenothiophenes ( 1 and 2 ) with benzoyl acetylene ( 4 ) afforded the rearrangement products ( 6a and b ) of the initial adducts. The major product of the reaction of diazo indenothiophene ( 3 ) with 4 was butadiene derivative 8a . Reaction of 1 with dibenzoylacetylene ( 5a ) gave the rearranged pyrazole ( 12 ), while the reaction of 2 and 3 , afforded the butadiene derivatives ( 8b-d ).  相似文献   

7.
A simple and direct synthetic methodology for a novel series of azines and their annulated systems was performed. Heterocyclization of acyl isothiocyanate 2 with urea or malononitrile gave s‐triazine 4 and 1,3‐oxazine 7 derivatives, respectively. The reaction of heteroallene 1 with acetylacetone tolerated 2‐thioxopyridine derivative 9 . The latter compound underwent heterocyclization with urea, hydrazine hydrate, or phenyl hydrazine to give the annulated pyridines 10 – 12 . Pyrimidinethione 14 was resulted from reaction of acylisothiocyanate with enamine 13 . Condensation of compound 14 with hydrazine hydrate, phenyl hydrazine, urea, and 3‐nitrobenzaldehyde in the presence of ethyl cyanoacetate or sodium hydroxide afforded 15 – 20 , respectively.  相似文献   

8.
Novel 3-(4,6-dimethoxybenzofuran-5-yl)-1-phenyl-1H-pyrazole-4-carboxaldehyde (3) and 3-chloro-3-(4,6-dimethoxybenzofuran-5-yl)propenal (4) were prepared via Vilsmeier–Haack reaction of 1-(4,6-dimethoxybenzofuran-5-yl)ethanone (1) and its hydrazone derivative 2. Reaction of compound 4 with some hydrazine derivatives, namely hydrazine hydrate, phenylhydrazine and benzylhydrazine hydrochloride led to the formation of pyrazole derivatives 58, respectively. On the other hand, reaction of compound 4 with thiourea, urea or guanidine gave the pyrimidine derivatives 911, respectively. Reaction of amino compound 11 with acetic anhydride, benzoyl chloride and benzenesulphonyl chloride yielded N-substituted pyrimidine derivatives 12–14, respectively. Reaction of diazonium salt of compound 11 with sodium azide afforded azidopyrimidine derivative 15, which upon reaction with ethyl acetoacetate gave 1,2,3-triazole derivative 16. Acid catalyzed reaction of 11 with p-nitrobenzaldehyde gave Schiff base 17, which cyclized upon reaction with thioglycolic acid or chloroacetyl chloride to give thiazolidin-4-one 18 and azetidin-2-one 19, respectively. The newly synthesized compounds were tested for their anti-inflammatory, analgesic and anticonvulsant activities. Depending on the obtained results, the newly synthesized compounds possess significant anti-inflammatory, analgesic and anticonvulsant activities.  相似文献   

9.
Condensation of 2, 4-diacetylphenol with diethyl oxalate serves as a basis for preparing 2-carbethoxy- and 2-carboxy-6-acetylchromones (I, II), 2-carbethoxy-6-ethoxyoxalyacetylchromone (V), and 2-carboxy-6-hydroxyoxalylacetylchromone (VI). The Mannich reaction is used to synthesize 6-(ω-dialkylaminopropionyl)-2-carboxychromones (VII, VIII) from compound I. Reaction of chromone-2-carbonyl chloride with enamines prepared from cyclohexanone and tetrahydrothiopyrone-4- gives syntheses of 2-(chromonoyl-2)cyclohexanone (III) and 3-(chromonoyl-2)tetrahydrothiopyrone-4 (IV). Hydrazine hydrate and compound III give the pyrazole derivative IX, while hydrazine hydrate and compound IV give pyrazole derivative X along with pyrazolylpyrazole derivative XI, which results from a second molecule of hydrazine hydrate opening the chromone ring. For Part XX see [11].  相似文献   

10.
Starting from readily available ethyl-4-nitropyrrole-2-carboxylate ( 1 ), substituted 1-methyl-2-(1,3,4-thiadiazol-2-yl)-4-nitropyrroles and 1-methyl-2-(1,3,4-oxadiazol-2-yl)-4-nitropyrroles were prepared. The reaction of 1 with diazomethane gave ethyl 1-methyl-4-nitropyrrole-2-carboxylate ( 2 ). Reaction of compound 2 with hydrazine hydrate afforded the corresponding hydrazide 3 . The reaction of 3 with formic acid yielded 1-(1-methyl-4-nitropyrrole-2-carboxyl)-2-(formyl)hydrazine ( 7 ). Refluxing of the latter with phosphorus pentasulfide in xylene yielded compound 6 in 40% yield. Reaction of compound 7 with phosphorus pentoxide afforded compound 9 . Reaction of compound 3 with 1,1′-carboxyldiimidazole in the presence of triethylamine yielded 2-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-oxadiazoline-4(H)-5-one ( 11 ). Refluxing compound 3 with cyanogen bromide in methanol gave compound 12 . Compound 13 could be obtained through the reaction of compound 3 with carbon disulfide in basic medium. Alkylation of compound 13 afforded the correspanding alkylthio derivative 14 . Reaction of 1-methyl-4-nitropyrrole-2-carboxylic acid ( 15 ) with thiosemicarbazide and phosphorus oxychloride gave 2-amino-5-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-thiadiazole ( 16 ). Sandmeyer reaction of compound 16 yielded 2-chloro-5-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-thiadiazole ( 17 ). Refluxing of the latter with thiourea afforded 2-(1-methyl-4-nitro-2-pyrrolyl)-1,3,4-thiadiazoline-4(H)-5-thione ( 18 ). Alkylation of compound 18 gave the corresponding alkylthio derivative 19 . Oxidation of the latter with hydrogen peroxide in acetic acid yielded 2-(1-methyl-4-nitro-2-pyrrolyl)-5-methylsulfonyl-1,3,4-thiadiazole ( 20 ).  相似文献   

11.
Abstract

3,5-Dicyano-6-mercapto-4-phenylpyridin-2(1H)-one (1) was reacted with ethyl chloroacetate to give compound (II) which on reaction with hydrazine hydrate gave the corresponding hydrazide derivative (III). Acylation of (III) with acetic acid, phenylisocyanate, or phenylisothiocyanate gave different monoacyl derivatives (IV-VI). Condensation of III with aromatic aldehydes and acetylacetone gave compounds VIIa-c, VIII respectively. Compound I was reacted with chloroanilides, bromoacetone and phenacyl bromide to yield the IX-XI; these and compound II gave thieno[2,3-b]-pyridines (XU-XV) on treatment with sodium ethoxide solution. Reaction of XII with acetic anhydride gave the diacetyl derivative XVI. Hydrolysis of compound XII with sodium hydroxide gave the corresponding acid (XVII) which on treatment with acetic anhydride gave the oxazine derivative (XVIII). Reaction of oxazine compound XVIII with ammonium acetate and hydrazine hydrate gave pyrido[3′,2′:4,5] thieno[3,2-d]pyrimidin-4.7-dione derivative (XIX) and (XX) respectively. The N-amino derivative (XX) was reacted with 4-nitrobenzaldehyde to give the corresponding azomethine (XXI).

Significant in vitro gram-positive and gram negative antibacterial activities as well as anti-fungal effect were observed for some members of the series.  相似文献   

12.
Studies of the displacement chemistry of 1,1-difluorocyclopropyldibenzosuberanyl alcohol 4 and its activated bromide derivative 6 have led to an improved approach to anti-2, a key precursor to LY335979 3HCl (1). Bromination of either syn-4 or anti-4 gave anti-oriented 6, indicating thermodynamically controlled product stereochemistry via a stabilized 1,1-difluorohomotropylium ion intermediate. Reaction of 6 with piperazine proceeded irreversibly to provide an isomeric mixture of piperazine products, with the syn:anti product ratio increased by solvent effects. Reaction of 6 with pyridine and pyrazine, on the other hand, gave anti-pyridinium and pyrazinium salts, respectively, apparently via equilibration of initially formed syn products. Reduction of pyrazinium salt 11 with lithium borohydride/TFA provided anti-2 unaccompanied by its syn isomer. A practical and expeditious approach to 1 was derived from these new results.  相似文献   

13.
Reaction of phenylpyruvic acid with semicarbazide afforded 6-benzyl-2H-[1,2,4]triazine-3,5-dione ( 1 ) which upon oxidation with potassium dichromate furnished 6-benzoyl-2H-[1,2,4]triazine-3,5-dione ( 2 ) in good yield. Constructing pyrazolo[3,4-e][1,2,4]triazine system ( 4 ) was achieved by reacting 2 with arylhydrazines in ethanolic solution. However treatment of 2 with the less reactive heteroarylhydrazines gave only the corresponding hydrazones ( 3 ). Attempt for constructing 1,2,4,5,10-pentaaza-dibenzo[a,d]cyclohept-3-one ( 7 ) from 2 was failed and (benzoimidazol-2-yl) [1,2,4] triazine derivative ( 6 ) was the only product. Reaction of 1 with phosphorus pentasulphide afforded compounds 8 and 9 . Compound 8 was transformed to the hydrazino compound 14 , which led to the construction of triazolo[4,3-d] [1,2,4]triazine system. Thus compounds 15 and 16 were obtained by reacting 14 with carbon disulfide or acetic anhydride respectively. Attempt to couple 8 with chloroacetic acid failed, while it's known isomer 10 led to the formation of thiazolo [2,3-c] [1,2,4]triazine derivative ( 13 ). Simple theoretical calculation using AM1 and PM3 semiempirical Hamitonian provided rational ways to correlate the reactivity with structure proposed.  相似文献   

14.
Reaction of 1-(3-bromo-2-oxopropyl)pyridazin-6-ones 1 and 2 with sodium azide at room temperature gave the corresponding 1-(3-azido-2-oxopropyl)pyridazin-6-ones 3 and 4 , whereas reaction of 1-(1-bromo-2-oxo-propyl)pyridazin-6-ones 5 and 6 with excess sodium azide afforded 4-azido-5-chloropyridazin-6-one 7 and 4,5-diazido-3-nitropyridazin-6-one 8 by dealkylation. Some 1-(2-hydroxypropyl)pyridazin-6-ones 9, 10, 11 were synthesized from the corresponding 1-(2-oxopropyl) derivatives 1, 2, 3 . 4,5-Dichloro-1-(2,3-dihydroxypropyl)-pyridazin-6-one 13 was also prepared from compound 9 via the corresponding 2,3-epoxypropyl derivative 12 . Treatment of compound 5 with thiourea gave 4,5-dichloro-1-(2-amino-4-methylthiazol-5-yl)pyridazin-6-one 14 . Reaction of compounds 1 and 2 with thiourea at 20° afforded the corresponding 3-formamidinylthio-2-oxo-propyl derivatives 15 and 16 , whereas treatment of compound 1 with thiourea at 45° gave 4,5-dichloro-1-[(2-aminothiazol-5-yl)methyl]pyridazin-6-one 17 . Compound 17 was also prepared from compound 15 by refluxing in ethanol.  相似文献   

15.
Reaction of 4-anthracen-9-yl-4-oxo-but-2-enoic acid (1) with indole gave the corresponding butanoic acid 2. Cyclocondensation of 2 with hydrazine hydrate, phenyl hydrazine, semicarbazide and thiosemicarbazide gave the pyridazinone derivatives 3a-d. Reaction of 3a with POCl(3) for 30 min gave the chloropyridazine derivative 4a, which was used to prepare the corresponding carbohydrate hydrazone derivatives 5a-d. Reaction of chloropyridazine 4a with some aliphatic or aromatic amines and anthranilic acid gave 6a-f and 7, respectively. When the reaction of the pyridazinone derivative 3a with POCl(3) was carried out for 3 hr an unexpected product 4b was obtained. The structure of 4b was confirmed by its reaction with hydrazine hydrate to give hydrazopyridazine derivative 9, which reacted in turn with acetyl acetone to afford 10. Reaction of 4b with methylamine gave 11, which reacted with methyl iodide to give the trimethylammonium iodide derivative 12. The pyridazinone 3a also reacted with benzene- or 4-toluenesulphonyl chloride to give 13a-b and with aliphatic or aromatic aldehydes to give 14a-g. All proposed structures were supported by IR, (1)H-NMR, (13)C-NMR, and MS spectroscopic data. Some of the new products showed antibacterial activity.  相似文献   

16.
Several chemical reactions were carried out on 3‐(benzothiazol‐2‐yl‐hydrazono)‐1,3‐dihydro‐indol‐2‐one ( 2 ). 3‐(Benzothiazol‐2‐yl‐hydrazono)‐1‐alkyl‐1,3‐dihydro‐indol‐2‐one 3a , 3b , 3c have been achieved. Reaction of compound 2 with ethyl bromoacetate in the presence of K2CO3 resulted the uncyclized product 4 . Reaction of compound 2 with benzoyl chloride afforded dibenzoyl derivative 5 . Compound 2 was smoothly acetylated by acetic anhydride in pyridine to give diacetyl derivative 6b . Moreover, when compound 4 reacted with methyl hydrazine, it yielded dihydrazide derivative 7 , whereas the hydrazinolysis of this compound with hydrazine hydrate gave the monohydrazide derivative 8 . {N‐(Benzothiazol‐2‐yl‐N′‐(3‐oxo‐3,4‐dihydro‐2H‐1,2,4‐triaza‐fluoren‐9‐ylidene)hydrazino]‐acetic acid ethyl ester ( 9 ) was prepared by ring closure of compound 8 by the action of glacial acetic acid. In addition, the reaction of 2‐hydrazinobenzothiazole ( 1 ) with d ‐glucose and d ‐arabinose in the presence of acetic acid yielded the hydrazones 10a , 10b , respectively. Acetylation of compound 10b gave compound 11b . On the other hand, compound 13 was obtained by the reaction of compound 1 with gama‐d ‐galactolactone ( 12 ). Acetylation of compound 13 with acetic anhydride in pyridin gave the corresponding N1‐acetyl‐N2‐(benzothiazolyl)‐2‐yl)‐2,3,4,5,6‐penta‐O‐acetyl‐d ‐galacto‐hydrazide ( 14 ). Better yields and shorter reaction times were achieved using ultrasound irradiation. The structural investigation of the new compounds is based on chemical and spectroscopic evidence. Some selected derivatives were studied for their antimicrobial and antiviral activities.  相似文献   

17.
Reaction of pentane-2,4-dione with N-(prop-2-en-1-yl)hydrazinecarbothioamide at a 1: 2 molar ratio in ethanol resulted in the formation of a pyrazole derivative. The latter reacted with nickel perchlorate at a 1: 1 molar ratio to form the nickel complex with pentane-2,4-dione bis(4-allylthiosemicarbazone). The same type of nickel complex was obtained as a result of N-(prop-2-en-1-yl)hydrazinecarbothioamide reaction with pentane-2,4-dione and nickel nitrate at a 2: 1: 1 molar ratio. Antimicrobial, antifungal, antioxidant, and anticancer activities of the obtained compounds were studied.  相似文献   

18.
The 1,3-dipolar cycloaddition reaction of 5-nitro-2-furyldiazomethane ( 1 ) with acrylonitrile, acrylamide, methyl acrylate, diethyl fumarate, methyl methacrylate and methyl cinnamate afforded the corresponding 3-substituted pyrazolines. ( 2a-f ). Similarly the pyrazoles ( 3b-d ) were prepared by addition of 1 to acetylenic compounds such as diethyl acetylenedicarboxylate, methyl phenylpropiolate and cyanoacetylene. Reaction of 1 with fumaronitrile and ω-nitro-styrene gave also the corresponding pyrazoles ( 3a and 3e ) instead of the pyrazolines. 3-(5′-Nitro-2′-furyl)-4-phenyl-5-carbomethoxypyrazoline ( 2f ) was oxidized with lead tetraacetate to the corresponding pyrazole ( 3f ), which was different from 3c , an addition product of 1 with methyl phenylpropiolate. 3-(5′-Nitro-2′-furyl)-5-carbamidopyrazoline ( 2b ) was pyrolyzed to the corresponding cyclopropane derivative 4 in low yield.  相似文献   

19.
Reaction of sodium arylsulfinate with 2-aryl-5-chloro-1,3,4-thiadiazole gave 2-aryl-5-arylsulfonyl-1,3,4-thiadiazole (3) in good yield. Starting from readily available 2-amino-5-benzylmercapto-1,3,4-thiadiazole compound 7 was obtained in three steps in moderate yield. Reaction of compound 7 with sodium arylsulfinate afforded 2,5-diarylsulfonyl-1,3,4-thiadiazole ( 11 ). Oxidation of compound 10 with hydrogen peroxide in acetic acid gave 2-arylsulfonyl-5-benzylsulfonyI-1,3,4-thiadiazole ( 12 ), in high yield.  相似文献   

20.
A selective synthesis of 4‐methylthiosemicarbazide (=N‐methylhydrazinecarbothioamide; 4a ) derivatives by reaction with benzil (=1,2‐diphenylethane‐1,2‐dione; 3 ) is described. The reaction conditions determined the condensation product formed. The most important factor was the acid used: in the presence of conc. HCl solution, the open‐chain 2 : 1 compound 1a was exclusively obtained, whereas in the presence of 2M HCl, the cyclic 1 : 1 condensation product 2a was formed. The alcohol used, the presence of H2O, and the time of heating were additional crucial factors. The new cyclic compound 2a with a MeO group was exclusively formed when working under high‐dilution conditions. The reaction with the 4‐phenyl derivative 4b gave new cyclic compounds as the major products under all conditions used (Scheme).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号