首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
Crystal and molecular structures of the planar neutral ligand, C26H16N8, and the four isomorphous five-coordinated metal complexes, [M(C26H16N8)(H2O)], M = Mn(II), Co(II), Cu(II), Zn(II), have been determined from three-dimensional X-ray diffraction data. The free ligand hpH2, C26H16N8, belongs to the P 21/c space group with Z=2, a=4.142(3), b=23.736(6), c=10.338(3) Ä, β=94.66(6)°. The metal complexes monohydrate Mhp-H2O all belong to the orthorhombic Pcab space group with Z=8. The dimensions are roughly 8.8×19.3×23.7 Å3. In each structure, the macrocyclic ligand has an almost planar conformation which differs from the saddle shaped ligand hydrate (hpH2·H2O) and the nickel complex [Nihp]5. The distances from the center of the macrocyclic ring to the nitrogen atom of the free ligand are 1.907(6) and 2.245(6)Å. The coordination geometry in these four complexes is square pyramidal with a water molecule as an axial ligand. The bond distances of M(II)-O(H2O), M(II)-N1 (imine), M(II)-N3 (pyridine) are: 2.19(1), 2.00(2), 2.27(2)Å respectively for the manganese complex; 2.08(1), 1.97(1), 2.23(1)Å for the cobalt complex; 2.33(1), 1.92(3), 2.18(1)Å for the copper complex; 2.110(5), 1.964(6), 2.252(6)Å for the zinc complex. The variation of metal-ligand distances can be correlated to the metal d orbital occupancy. A comparison with similar ligands will be presented.  相似文献   

3.

The silver(I) complex of a 15-membered macrocyclic ligand with an N3S2 donor set (L1) has been prepared by the reaction of 2,6-diacetylpyridine with 1,8-diamino-3,6-dithiaoctane in the presence of silver(I) ions. A reduced form (L2) of the ligand, in which the imine groups are converted to amines, was prepared by the reduction of the silver(I) complex by sodium borohydride. The ligand L2 has been characterised by various spectroscopic techniques and the copper(II) complex has been prepared. The metal complexes of L1 and L2 have been characterised by electrospray mass spectrometry and UV-visible spectroscopy. The copper(II) complex of L1 has been synthesised from [AgL1]+ via metal exchange. [CuL1](ClO4)2 crystallises in the orthorhombic space group Pna21 with a = 14.374(5) Å, b = 12.947(3) Å, c = 11.824(3) Å with Z= 4. The geometry about the metal centre approximates trigonal bipyramidal with the pyridinyl nitrogen and the sulfur donors in the equatorial positions and the imine nitrogen donors in the axial positions. Metal ion exchange and the relative stabilities of metal complexes of the macrocyclic ligands were studied by electrospray mass spectrometry.  相似文献   

4.
Eight new heterodinuclear Cu(II)–M(II) (M = Pb and Zn) complexes of four new phenol based compartmental macrocyclic ligands, possessing contiguous (N2O2) and (NxO2) (x = 2, 3) coordination sites, were prepared by the template reaction of [N,N′-bis(3-formyl-5-methylsalicylidene)ethane-1,2-diaminato]copper(II), with various di- and/or tri-amines in the presence of Pb(II) and Zn(II) ions. The crystal structure of [CuZnL3(H2O)](ClO4)2, 6, was determined by X-ray diffraction and shows that the Zn(II) and Cu(II) ions reside in the N2O2 sites of the macrocyclic ligand. The fifth coordination site of the Zn centre is occupied by a water ligand. All the complexes have been characterized by elemental analysis, molar conductivity and spectroscopic methods (IR and UV). Also, all the synthesized complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Staphyloccocus aureus and Candida albicans.  相似文献   

5.
ILHAN  Salih TEMEL  Hamdi KILIC  Ahmet 《中国化学》2007,25(10):1547-1550
Six new macrocyclic complexes were synthesized by a template reaction of 1,4-bis(2-formylphenoxy)butane with diamines and Cu(NO3)2·3H2O and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, magnetic susceptibility measurements, molar conductivity measurements and mass spectra. The metal to ligand molar ratios of the Cu(Ⅱ) complexes were found to be 1 : 1. The Cu(Ⅱ) complexes are 1 : 2 electrolytes as shown by their molar conductivities (∧m) in DMF at 10^-3 mol·L^-1. Due to the existence of free ions the Cu(Ⅱ) complexes are electrically conductive. Their configurations were proposed to be probably distorted octahedral.  相似文献   

6.
Two macrocyclic dinuclear complexes, [Cu2L1](PF6)2 and [Cu2L2](ClO4)2, were synthesized by cyclo-condensation between N,N′-bis(3-formyl-5-methylsalicylidene)ethylenediimine or N,N′- bis(3-formyl-5-n-butylsalicylidene)ethylenediimine and ethylenediamine in the presence of Cu2+ ions. The crystal structures of the complexes were studied. The variable-temperature magnetic susceptibilities and cyclic voltammograms of the complexes were measured. The magnetic and electrochemical properties of the complexes were discussed. The results show that the complexes display very strong antiferromagnetic exchanges and that all copper(II) complexes undergo a one-electron transfer process.  相似文献   

7.
A series of new 24-membered macrocyclic CoII, NiII, CuII and ZnII complexes of the ligands L1H2 and L2H2 were prepared by the non-template and template methods respectively. The ligand L1H2 was formed by the condensation of pyrazole-3,5-dicarbohydrazide and glyoxal and all attempts to isolate the ligand L2H2 were unsuccessful. These, ligand and transition metal complexes were characterized on the basis of elemental analysis, IR, 1HNMR, UV–Visible, magnetic susceptibility measurements, ESR, conductivity measurements, FAB-mass and thermal analysis. The redox behavior of metal ions in the polyazamacrocyclic ligand field is also studied. Electroreduction of carbon dioxide to carbon monoxide is mainly focused on using polydentate azamacrocyclic ligands with amine and imine functionalities, based on the electrochemical behavior of nickel (II) ion in the macrocyclic territory.  相似文献   

8.
Mixed ligand dinuclear copper(II) complexes of the general formula [Cu2(Rdtc)tpmc)](ClO4)3 with octaazamacrocyclic ligand tpmc and four different heterocyclic dithiocarbamate ligands Rdtc?, as well as the complexes [Cu2(tpmc)](ClO4)4 and [Cu(tpmc)](ClO4)2?2H2O were studied in aqueous NaClO4 and HClO4 solutions by cyclic voltammetry on glassy carbon electrode. The electrochemical properties of the ligands and Cu(II) complexes were correlated with their electronic structure. Conductometric experiments showed different stoichiometry in complexation of tpmc with Cu2+ ions and transport of ions in acetonitrile and in aqueous media. These studies clarified the application of this macrocyclic ligand as ionophore in a PVC membrane copper(II) selective electrode and contributed elucidation of its sensor properties.  相似文献   

9.
A new pendant‐armed macrocyclic ligand, L1, bearing four pyridyl pendant groups has been synthesized by N‐alkylation of the tetraazamacrocyclic precursor L with 2‐picolyl chloride hydrochloride. Metal complexes of L1 have been synthesized and characterized by microanalysis, MS‐FAB, conductivity measurements, IR, UV‐Vis, 1H and 13C NMR spectroscopy and magnetic studies. Crystal structures of the ligand L1 as well as of the complexes [Ni2L1](ClO4)4·5CH3CN and [Cu2L1](ClO4)4·4.5CH3CN have been determined by single crystal X‐ray crystallography. The X ray studies show the presence of two metal atoms within the macrocyclic ligand in both metal complexes showing five coordination arrangement for the metal ions.  相似文献   

10.
《中国化学会会志》2017,64(12):1524-1531
New complexes of nickel(II) and palladium(II) were synthesized using the ferrocenyl imine ligand, which was formed by the condensation of 2‐aminothiophenol and acetylferrocene. This bidentate Schiff base ligand was coordinated to the metal ions through the NS donor atoms. Monomeric complexes of nickel(II) and palladium(II) were synthesized by the reactions of the Schiff base ligand with nickel(II) and palladium(II) chloride in a 2:1 M ratio. In these complexes, the thiol group was deprotonated and coordinated to the metals. The molar conductivity values of the complexes in DMSO showed the presence of non‐electrolyte species. The fluorescence characteristics of the Schiff base ligand and its complexes were studied in DMSO. The synthesized complexes were characterized by FT‐IR, 1H NMR, UV–vis spectroscopy, elemental analysis, and conductometry. Furthermore, the binding interactions of the complexes with DNA were investigated by electronic absorption spectroscopy, and the intrinsic binding constant (K b) was calculated. Moreover, viscosity and melting temperature (T m) were investigated in order to further explore the nature of interactions between the complexes and DNA.  相似文献   

11.
The reactions of platinum(II) complexes, [PtCl2(dach)] (dach = (1R,2R)‐1,2‐diaminocyclohexane) and [PtCl2(en)] (en = ethylenediamine) with biologically relevant ligands such as 5′‐GMP (guanosine‐5′‐monophosphate) and l ‐His (l ‐histidine) were studied by UV–vis spectrophotometry, 1H NMR spectroscopy, and high‐performance liquid chromatography (HPLC). Spectrophotometrically, these reactions were investigated under pseudo‐first‐order conditions at 310 K in 25 mM Hepes buffer (pH 7.2) and 10 mM NaCl to prevent the hydrolysis of the complexes. The [PtCl2(en)] complex reacts faster than [PtCl2(dach)] in the reaction with studied nucleophiles. This confirms the fact that the reactivity of studied Pt(II) complexes depends on the structure of the inert bidentate ligand. Also, the substitution reactions with l ‐His are always faster than the reactions with nucleotide 5′‐GMP. The reactions of [PtCl2(dach)] and [PtCl2(en)] complexes with l ‐histidine are studied by 1H NMR spectroscopy. The obtained rate constants are in agreement with those obtained by UV–vis. The same reactions were studied by HPLC comparing the obtained chromatograms during the reaction. The changes in intensity of signals of the free and coordinated ligand show that after a few days there is only one dominant product in the system. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 43: 99–106, 2011  相似文献   

12.
The Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II) and Cd (II) complexes were prepared by reaction of its metal chlorides with new azo-dye ligand (H2L). The ligand derived from 4,4′-oxydianiline and 2-amino-4-chlorophenol was synthesized in a 1:2 molar ratio. The structure of the ligand and its metal complexes was investigated using different tools such as elemental analysis (C, H, N and M), molar conductivity, IR, UV–vis, 1H-NMR, mass spectrometry and thermogravimetric and differential thermogravimetric studies. The data showed that the ligand acted as a N,N,O,O-binegative tetradentate ligand. All metal complexes had a octahedral structure as depicted by spectral and elemental analyses. The conductivity data showed the electrolytic nature of the Cr (III) and Fe (III) complexes while the other complexes were nonelectrolytes. Thermal analysis studies showed the decomposition of the complexes in four to five steps with the weight loss of hydrated water in the first decomposition step followed by the coordinated water and ligand molecules. Biological activity was tested for the prepared compounds against four bacterial species (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) and against two fungal species (Aspergillus fumigatus and Candida albicans). Also, all complexes were screened for anticancer activities against a breast cancer (MCF-7) cell line. The [Co(L)(H2O)2] complex showed the lowest IC50 value. Molecular docking is a key tool in computer drug design. Therefore, investigation of protein receptors and ligand interaction plays a vital role in the design of structurally based drugs. As a result, docking studies were investigated for H2L ligand, [Mn(L)(H2O)2] and [Ni(L)(H2O)2] complexes with 5KBC, 3V7B and 4G9M receptors.  相似文献   

13.
This paper describes synthesis, characterization and application of a series of Cu(II) complexes with a novel 3‐thioxo‐[1,2,4,5]tetrazocane‐6,8‐dione (N4) macrocyclic ligand. The complexes were characterized by physicochemical and spectroscopic techniques, such as UV–visible and IR spectroscopies, molar conductance, magnetic susceptibility measurements, and elemental analysis. The data suggest that the mononuclear Cu(II) complexes have a metal‐to‐ligand mole ratio of 1:1 and that the Cu(II) ions are coordinated with the four nitrogen atoms inside the N4 macrocyclic ring. The experimental anisotropic g‐values indicate that the chloro, nitrato, acetate, and perchlorato complexes have six‐coordinate distorted octahedral behavior, whereas the sulfato complex has five‐coordinate square‐pyramidal geometry. A simple and nontoxic method for preparation of CuO nanoparticles based upon the thermal decomposition of the synthesized Cu(II) complexes has been explored. Finally, the degradation of Rhodamine 6G dye by the catalytic performance of nano‐sized CuO material has been evaluated.  相似文献   

14.
The Schiff base ligand, N,N′-bis-(4-isopropylbenzaldimine)-1,2-diaminoethane (L), obtained by the condensation of 4-isopropylbenzaldehyde and 1,2-diaminoethane, has been used to synthesize the complexes of the type [ML2X2] [M = Co(II), Ni(II) and Zn(II); X = Cl and OAc]. The newly synthesized ligand (L) and its complexes have been characterized on the basis of elemental analyses, mass, 1H and 13C-NMR, molar conductance, IR, UV–vis, magnetic moment, CV and thermal analyses, powder XRD and SEM. IR spectral data show that the ligand is coordinated to the metal ions in a bidentate manner. The geometrical structures of these complexes are found to be octahedral. Interestingly, reaction with Cu(II) ion with this ligand undergoes hydrolytic cleavage to form ethylenediamine copper(II) complex and the corresponding aldehyde. The antimicrobial results indicate that the chloro complexes exhibit more activity than the acetato complexes. The complexes bind to CT–DNA by intercalation modes. Novel chloroform soluble ZnL2Cl2 complex exhibits tremendous antimicrobial, DNA binding and cleaving properties.  相似文献   

15.
Three new complexes, [(η6-C6H6)RuCl(C5H4N-2-CH=N-Ar)]PF6 (Ar = phenylmethylene (1), (4-methoxyphenyl)methylene (2), and phenylhydrazone (3)), were prepared by reacting [(η6-C6H6)Ru(μ-Cl)Cl]2 with N,N′-bidentate ligands in a 1 : 2 ratio. Full characterization of the complexes was accomplished using 1H and 13C NMR, elemental and thermal analyses, UV–vis and IR spectroscopy and single crystal X-ray structures. Single crystal structures confirmed a pseudo-octahedral three-legged, piano-stool geometry around Ru(II), with the ligand coordinated to the ruthenium(II) through two N atoms. The cytotoxicity of the mononuclear complexes was established against three human cancer cell lines and selectivity was also tested against non-cancerous human epithelial kidney (HEK 293) cells. The compounds were selective toward the tumor cells in contrast to the known anti-cancer drug 5-fluoro uracil which was not selective between the tumor cells and non-tumor cells. All the compounds showed moderate activity against MCF7 (human breast adenocarcinoma), but showed low antiproliferative activity against Caco-2 and HepG2. Also, antimicrobial activities of the complexes were tested against a panel of antimicrobial-susceptible and -resistant Gram-negative and Gram-positive bacteria. Of special interest is the anti-mycobacterial activity of all three synthesized complexes against Mycobacterium smegmatis, and bactericidal activity against resistant Enterococcus faecalis and methicillin-resistant Staphylococcus aureus ATCC 43300.  相似文献   

16.
Two complexes were obtained during the reactions of 6-amino-1-methyl-5-nitrosouracil (AMNU) and 6-methylamino-1-benzyl-5-nitrosouracil (MABNU) with cis-diaquadiamineplatinum(II) nitrate complex, cis-[Pt(NH3)2(H2O)2](NO3)2. The complexes were isolated in good yields as powdery precipitates. They were characterized through their elemental analysis, infrared, UV–vis, and 1H NMR spectroscopies as well as thermal analyses. The obtained results indicated that, pyrimidine bases substitute easily aqua ligands and interact with Pt(II) ions as a monodentate ligand in the neutral and ionic form for the ligands AMNU and MABNU, respectively. The exocyclic oxygen atoms are the most probable binding site. Square planar structures, cis-form, were proposed in both cases. The free ligands, and their Pt(II) complexes were screened for their antimicrobial activities.  相似文献   

17.
A new dialdehyde 1,5-bis(2-formylphenyl)pentane was synthesized from 1,5-dibromopentane with salicylaldehyde and K2CO3; macrocyclic ligand was synthesized by reaction of 2,6-diaminopyridine and 1,5-bis(2-formylphenyl)pentane. Cu(II), Ni(II), Pb(II), Zn(II), Cd(II) and La(III) complexes were synthesized by reaction of the ligand and Cu(ClO4)2 · 6H2O, Ni(ClO4)2 · 6H2O, Pb(ClO4)2 · 6H2O, Zn(ClO4)2 · 6H2O, Cd(ClO4)2 · 6H2O and La(ClO4)3 · 6H2O, respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV–Vis spectra, magnetic susceptibility, conductivity measurements and mass spectra. All complexes are diamagnetic and Cu(II) complex is binuclear.  相似文献   

18.
Abstract

A new hydrazone, ethyl Z-2-(pyridine-2yl-methylene)hydrazinecarboxylate (C9H11N3O2; Hpyec) and its metal complexes bis(ethyl Z-2-(pyridine-2yl-methylene)hydrazinecarboxylate)nickel(II) monohydrate, [Ni(pyec)2]·H2O (1) and bis(acetato)(ethyl Z-2-(pyridine-2yl-methylene)hydrazinecarboxylate)cadmium(II), [Cd(Hpyec)(CH3COO)2] (2), have been prepared by mechanochemical syntheses and characterized by elemental analysis, UV–vis, IR and NMR spectroscopies, TG-DTA, and solid state emission techniques. The X-ray single crystal structures of both complexes were determined. In 1, the Ni2+ ion is coordinated by two N,N,O-tridentate anionic ligands to generate a distorted cis-NiO2N4 octahedron. In 2, the cadmium ion is seven-coordinate by one neutral N,N,O-tridentate ligand and two chelating acetate ions to generate a very-distorted CdN2O5 pentagonal bipyramid with the Hpyec atoms occupying both axial and one equatorial site. Crystal data: 1, C18H22N6NiO5, Mr?=?461.12, monoclinic, P21/c, a?=?10.8759(3) Å, b?=?11.7055(4) Å, c?=?16.8424(5) Å, β?=?108.583(1)°, V?=?2032.38(11) Å3, Z?=?4, R(F)?=?0.023, wR(F2)?=?0.065; 2, C13H17CdN3O6, Mr?=?423.69, monoclinic, Cc, a?=?13.0215(10) Å, b?=?15.8104(11) Å, c?=?7.99(6) Å, β?=?96.692(2)°, V?=?1621.7(2) Å3, Z?=?4, R(F)?= 0.017, wR(F2)?=?0.038.  相似文献   

19.
A novel vic-dioxime ligand with a thiourea moiety, (4E,5E)-1,3-bis{4-[(4-bromophenylamino)methylene]phenyl}-2-thiooxaimidazoline-4,5-dione dioxime (4) (bmdH2) has been synthesized from N,N′-bis{4-[(4-bromophenylamino)methylene]phenyl}thiourea and (E,E)-dichloroglyoxime. The bmdH2 ligand (4) forms transition metal complexes [M(bmdH)2] with a metal?:?ligand ratio of 1?:?2 with M?=?Ni(II), Co(II), and Cu(II). The mononuclear Ni(II), Co(II) and Cu(II) complexes, [Ni(bmdH)2] (5), [Co(bmdH)2] (6) and [Cu(bmdH)2] (7) have the metal ions coordinated through the two N,N atoms, as do most vic-dioximes. Elemental analyses, molar conductivity, magnetic susceptibility, IR, 1H NMR spectra, and UV-Visible spectroscopy were used to elucidate the structures of the ligand and its complexes. Conductivity measurements have shown that the mononuclear complexes are non-electrolytes. In addition, the ligands and metal complexes were screened for antibacterial and antifungal activities by agar well diffusion techniques using DMF as solvent.  相似文献   

20.
《中国化学会会志》2017,64(3):261-281
A new Schiff base was prepared from the reaction of 4,4′‐methylenedianiline with 2‐benzoylpyridine in 1:2 molar ratio, as well as its different metal chelates. The structures of the ligand and its metal complexes were studied by elemental analyses, spectroscopic methods (infrared [IR ], ultraviolet–visible [UV –vis], 1H nuclear magnetic resonance [NMR ], electron spin resonance [ESR ]), magnetic moment measurements, and thermal studies. The ligand acts as tetradentate moiety in all complexes. Octahedral geometry was suggested for Mn(II ), Cu(II ), Cr(III ), and Zn(II ) chloride complexes and pentacoordinated structure and square planar geometry for Co(II ), Ni(II ), Cu(NO3 )2, CuBr2 , and Pd(II ) complexes. ESR spectra of copper(II ) complexes ( 4 )–( 6 ) at room temperature display rhombic symmetry for complex ( 4 ) and axial type symmetry for complexes ( 5 ) and ( 6 ), indicating ground state for Cu(II ) complexes. The derivative thermogravimetric (DTG ) curves of the ligand and its metal complexes were analyzed by using the rate equation to calculate the thermodynamic and kinetic parameters, which indicated strong binding of the ligand with the metal ion in some complexes. Also, some of these compounds were screened to establish their potential as anticancer agents against the human hepatic cell line Hep‐G2 . The obtained IC50 value of the copper(II ) bromide complex (4.34 µg/mL ) is the highest among the compounds studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号