首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Chemical modification of graphene quantum dots (GQDs) can influence their physical and chemical properties; hence, the investigation of the effect of organic functional groups on GQDs is of importance for developing GQD–organic hybrid materials. Three peripherally functionalised GQDs having a third‐generation dendritic wedge (GQD‐ 2 ), long alkyl chains (GQD‐ 3 ) and a polyhedral oligomeric silsesquioxane group (GQD‐ 4 ) were prepared by the CuI‐catalysed Huisgen cycloaddition reaction of GQD‐ 1 with organic azides. Cyclic voltammetry indicated that reduction occurred on the surfaces of GQD‐ 1 – 4 and on the five‐membered imide rings at the periphery, and this suggested that the functional groups distort the periphery by steric interactions between neighbouring functional groups. The HOMO–LUMO bandgaps of GQD‐ 1 – 4 were estimated to be approximately 2 eV, and their low‐lying LUMO levels (<?3.9 eV) were lower than that of phenyl‐C61‐butyric acid methyl ester, an n‐type organic semiconductor. The solubility of GQD‐ 1 – 4 in organic solvents depends on the functional groups present. The functional groups likely cover the surfaces and periphery of the GQDs, and thus increase their affinity for solvent and avoid precipitation. Similar to GQD‐ 2 , both GQD‐ 3 and GQD‐ 4 emitted white light upon excitation at 360 nm. Size‐exclusion chromatography demonstrated that white‐light emission originates from the coexistence of differently sized GQDs that have different photoluminescence emission wavelengths.  相似文献   

2.
Ruthenium complexes containing 4,7-diphenyl-1,10-phenanthroline disulfonate (bathophenanthroline disulfonate; BPS) ligands, Ru(BPS)34−, Ru(BPS)2(bipy)2− and Ru(BPS)(bipy)2, were compared to tris(2,2′-bipyridine)ruthenium(II) (Ru(bipy)32+), including examination of the wavelengths of maximum absorption and corrected emission intensity, photoluminescence quantum yield, stability of their oxidised ruthenium(III) form, and relative chemiluminescence intensities and signal-to-blank ratios with cerium(IV) sulfate and six analytes (codeine, morphine cocaine, potassium oxalate, furosemide and hydrochlorothiazide) in acidic aqueous solution. The presence of BPS ligands in the complex increased the photoluminescence quantum yield, but decreased the stability of the oxidised form of the reagent. In contrast to previous evidence showing much greater electrochemiluminescence intensities using Ru(BPS)2(bipy)2− and Ru(BPS)(bipy)2, these complexes did not provide superior chemiluminescence signals than their homoleptic analogues.  相似文献   

3.
Lead halide perovskite quantum dots (QDs) are promising candidates for future lighting applications, due to their high quantum yield, narrow full width at half maximum (FWHM), and wide color gamut. However, the toxicity of lead represents a potential obstacle to their utilization. Although tin(II) has been used to replace lead in films and QDs, the high intrinsic defect density and oxidation vulnerability typically leads to unsatisfactory material properties. Bismuth, with much lower toxicity than lead, is promising to constitute lead‐free perovskite materials because Bi3+ is isoelectronic to Pb2+ and more stable than Sn2+. Herein we report, for the first time, the synthesis and optical characterization of MA3Bi2Br9 perovskite QDs with photoluminescence quantum yield (PLQY) up to 12 %, which is much higher than Sn‐based perovskite nanocrystals. Furthermore, the photoluminescence (PL) peaks of MA3Bi2X9 QDs could be easily tuned from 360 to 540 nm through anion exchange.  相似文献   

4.
Lead halide perovskite quantum dots (QDs) are promising candidates for future lighting applications, due to their high quantum yield, narrow full width at half maximum (FWHM), and wide color gamut. However, the toxicity of lead represents a potential obstacle to their utilization. Although tin(II) has been used to replace lead in films and QDs, the high intrinsic defect density and oxidation vulnerability typically leads to unsatisfactory material properties. Bismuth, with much lower toxicity than lead, is promising to constitute lead‐free perovskite materials because Bi3+ is isoelectronic to Pb2+ and more stable than Sn2+. Herein we report, for the first time, the synthesis and optical characterization of MA3Bi2Br9 perovskite QDs with photoluminescence quantum yield (PLQY) up to 12 %, which is much higher than Sn‐based perovskite nanocrystals. Furthermore, the photoluminescence (PL) peaks of MA3Bi2X9 QDs could be easily tuned from 360 to 540 nm through anion exchange.  相似文献   

5.
The discovery of new environmentally friendly luminescent materials with high photoluminescence quantum yield and long-term stability is critical for future solid-state lighting and displays applications. Although lead halide perovskite materials with excellent optical properties have been extensively investigated in recent years because they hold tremendous promise in optoelectronic devices, the toxicity of lead and poor air-stability still hinder their commercial applications. Moreover, while substantial work has been done on three-dimensional (3D) perovskite halides, the zero-dimensional (0D) halide emitters with bright luminescence remain elusive. Herein we report a facile solid-state reaction method to prepare an efficient lead-free all-inorganic halide material with 0D structure, Cs3Cu2I5, with photoluminescence quantum yield up to 80%. Under ultraviolet excitation at 313 nm, the Cs3Cu2I5 powder phosphors show a strong blue photoluminescence emission with peak at 445 nm and CIE color coordinates of (0.1486, 0.0873). Notably, Cs3Cu2I5 exhibits good color stability at high temperatures and outstanding stability towards air exposure exceeding one month (30 days). These findings not only open up a door for the development of promising highly emissive low-dimensional halide materials for lighting and displays, but also offer a new scalable approach for the potential mass production of halide emitters.  相似文献   

6.
Excitation‐dependent photoluminescence (PL) is a well‐known property of graphene quantum dots (GQDs). For the development of carbon‐based photofunctional materials, GQDs possessing uniform PL properties are in high demand. A protocol has been established to separate spectroscopically uniform lipophilic GQD‐ 1 a from a mixture of GQD‐ 1 mainly composed of GQD‐ 1 a and GQD‐ 1 b . The mixture of GQD‐ 1 was synthesized through the reaction of p‐methoxybenzylamine with GQD‐ 2 prepared from graphite by common oxidative exfoliation. Size‐exclusion chromatography gave rise to GQD‐ 1 a and GQD‐ 1 b , with diameters of 19.8 and 4.9 nm, respectively. Large GQD‐ 1 a showed that the PL was fairly independent of the excitation wavelengths, whereas the PL of small GQD‐ 1 b was dependent on excitation. The excitation‐dependent nature is most likely to be associated with the structures of sp2 domains on the graphene surfaces. The large sp2‐conjugated surface of GQD‐ 1 a is likely to possess well‐developed and large sp2 domains, the band gaps of which do not significantly vary. The small sp2‐conjugated surface of GQD‐ 1 b produces small sp2‐conjugated domains that generate band gaps differing with domain sizes.  相似文献   

7.
Zero-dimensional metal halides have attracted much attention due to their attractive photoelectric properties. Here, we propose a new strategy of synthesizing metal halides crystals by recrystallization in water. The as-synthesized Cs2InCl5(H2O)-orange crystals are dissolved and recrystallized in water ( Cs2InCl5(H2O)-blue ), with its photoluminescence (PL) changing from orange to blue, both of which are derived from self-trapping excitons (STEs). The time-resolved photoluminescence (TRPL) spectrum of Cs2InCl5(H2O)-blue shows that it has an ultralong lifetime up to milliseconds (τ=52.98 ms), which is expected to be applied in biological sensors. The photoluminescence quantum yield (PLQY) increases from 2.25% to 11.61% in the self-assembly process. By using a post-doping method, the PL of crystals turns into red when we introduce Mn2+ as dopant while there is no obvious change upon using a traditional solvent-thermal method. Recrystallization in water and post-doping provide a new perspective for the synthesis and doping of metal halides.  相似文献   

8.
PAMAM树形分子模板法原位合成发紫光CdS量子点的研究   总被引:1,自引:0,他引:1  
半导体纳米粒子由于具有明显的量子尺寸效应,被形象地称为量子点(quantum dots)。量子点的发射波长可以通过改变粒子尺寸进行调节,并且由于是多电子体系发光,其荧光寿命较长,量子产率和光学稳定性能均优于荧光染料,可望成为新一代的发光材料和荧光探针[1,2]。为此,制备尺寸可控、荧光量子产率高、水溶性的半导体量子点成为很多科研人员的研究目标。树形分子科学的发展,为纳米材料的合成开辟了一条崭新的道路。人们利用树形分子独特的结构特征,将其作为纳米反应器和纳米容器,合成了尺寸均匀、分散性好的Ag、Cu、Pt、Pd等纳米簇[3 ̄7]。1998…  相似文献   

9.
Zero-dimensional (0D) lead-free perovskites have unique structures and optoelectronic properties. Undoped and Sb-doped all inorganic, lead-free, 0D perovskite single crystals A2InCl5(H2O) (A=Rb, Cs) are presented that exhibit greatly enhanced yellow emission. To study the effect of coordination H2O, Sb-doped A3InCl6 (A=Rb, Cs) are also synthesized and further studied. The photoluminescence (PL) color changes from yellow to green emission. Interestingly, the photoluminescence quantum yield (PLQY) realizes a great boost from <2 % to 85–95 % through doping Sb3+. We further explore the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques. Furthermore, Sb-doped 0D rubidium indium chloride perovskites show excellent stability. These findings not only provide a way to design a set of new high-performance 0D lead-free perovskites, but also reveal the relationship between structure and PL properties.  相似文献   

10.
The past decade has witnessed the increasing interest in cesium lead halide perovskite quantum dots (PQDs) for their excellent optical properties with higher photoluminescence efficiency and tunable emission wavelengths widely applied in white LED, photovoltaic devices, etc. Here we report the preparation of CsPbBr3 PQDs by a facile anti-solvent method using conventional quaternary ammonium bromide (CTAB) as a double modifier—both proper alkyl group protection and bromine source donator. The as-formed PQDs are well-monodispersed cubes with a size of 10–15 nm and high photoluminescence quantum yield (PLQY) of up to 43 %. To enhance the stability of PQDs, CsPbBr3@PS microspheres were formed by electrospraying process. The microspheres not only show excellent luminous properties, but exhibit much higher stability against air and UV light irradiation due to the super hydrophobic property of polystyrene.  相似文献   

11.
Carbon nanomaterials have attracted the attention of the scientific community for more than 30 years now; first with fullerene, then with nanotubes and now with graphene and graphene related materials. Graphene quantum dots (GQDs) are nanoparticles of graphene that can be synthesized following two approaches, namely top-down and bottom-up methods. The top-down synthesis used harsh chemical and/or physical treatments of macroscopic graphitic materials to obtain nanoparticles, while the second is based on organic chemistry through the synthesis of polycyclic aromatic hydrocarbons exhibiting various sizes and shapes that are perfectly controlled. The main drawback of this approach is related to the low solubility of carbon materials that prevents the synthesis of nanoparticles containing more than few hundreds of sp2 carbon atoms. Here we report on the synthesis of a family of rectangular-shaped graphene quantum dots containing up to 162 sp2 carbon atoms. These graphene quantum dots are not functionalized on their periphery in order to keep the maximum similarity with nanoparticles of pure graphene. We chose water with sodium deoxycholate surfactant to study their dispersion and their optical properties (absorption, photoluminescence and photoluminescence excitation). The electronic structure of the particles and of their aggregates are studied using Tight-Binding (TB). We observe that the larger particles ( GQD 3 and GQD 4 ) present a slightly better dispensability than the smaller ones, probably because the larger GQDs can accommodate more surfactant molecules on each side, which helps to stabilize their dispersion in water.  相似文献   

12.
Zero‐dimensional (0D) lead‐free perovskites have unique structures and optoelectronic properties. Undoped and Sb‐doped all inorganic, lead‐free, 0D perovskite single crystals A2InCl5(H2O) (A=Rb, Cs) are presented that exhibit greatly enhanced yellow emission. To study the effect of coordination H2O, Sb‐doped A3InCl6 (A=Rb, Cs) are also synthesized and further studied. The photoluminescence (PL) color changes from yellow to green emission. Interestingly, the photoluminescence quantum yield (PLQY) realizes a great boost from <2 % to 85–95 % through doping Sb3+. We further explore the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques. Furthermore, Sb‐doped 0D rubidium indium chloride perovskites show excellent stability. These findings not only provide a way to design a set of new high‐performance 0D lead‐free perovskites, but also reveal the relationship between structure and PL properties.  相似文献   

13.
Highly efficient inorganic phosphors are crucial for solid-state lighting. In this paper, a new method of low-temperature self-reduction was used for preparing a highly efficient deep blue-emitting phosphor of Ca[B8O11(OH)4] : Eu2+ (CBH : Eu2+). The crystal structure, morphology, chemical state, and photoluminescence (PL) properties of the CBH : Eu2+ phosphor have been investigated. By using the screened hybrid function (HSE06), the band gap (Eg) of CBH was calculated to be 7.48 eV, which is a necessary condition for achieving high quantum yield phosphors. The experiment results show that almost all the added raw materials of Eu3+ can be reduced to Eu2+ in CBH crystal under a non-reducing atmosphere. The CBH : Eu2+ phosphor shows a broad excitation spectrum centered at 277 and 327 nm in the range of 220 to 400 nm, and a narrow-band emission spectrum centered at 428 nm in the range of 400 to 500 nm, with a full width at half maximum (fwhm) of 42.35 nm. Under UV radiation, the CBH : 2 %Eu2+ exhibits high photoluminescence quantum yield (PLQY=95.0 %), high external quantum efficiency (EQE=31.1 %), and ultra-high color purity (97.6 %). The PL intensity of CBH : 2 %Eu2+ remains 62.6 % of the initial intensity at 150 °C. Finally, the white light-emitting diodes (WLED) fabricated by CBH : 2 %Eu2+, excited by a 365 nm chip, presents outstanding performances with a luminous efficacy (LE) of 13.9 lm/W, a color rendering index (CRI) of 89.4, and a correlated color temperature (CCT) of 5825 K. The above results show that CBH : Eu2+ can be used as a promising blue phosphor for WLED. This new method of low-temperature self-reduction can be applied to design and prepare other new types of highly efficient phosphors.  相似文献   

14.
采用非热注法成功制备了高质量的油溶性CuInS2/ZnS核壳量子点, 量子点的荧光发射峰在可见光到近红外范围内可调(550~800 nm), 且荧光量子产率最高达80%。本文进一步利用具有温敏特性的聚丙烯酰胺胶束作相转移剂, 成功地将油溶性的CuInS2/ZnS核壳量子点转移入水相。水相中自组装形成的CuInS2/ZnS量子点-胶束复合物不仅具有良好的荧光性质, 而且胶束原有的灵敏的热响应性被保留。这些研究初步表明, 无镉的低毒的CuInS2/ZnS量子点可作为纳米胶束的荧光示踪探针。  相似文献   

15.
Compared with other transition metal Mxene derived quantum dots(MQDS),Ta-based Mxene quantum dots have good functionality,but Ta-based Mxene quantum dots and their applications have not been studied so far.In this paper,we report for the first time the synthesis of high fluorescence quantum yield(QY) N-doped Ta4 C3 quantum dots(N-MQDs) using Ta4 C3 quantum dots in acid reflux damaged Ta4 C3 nanosheets as precursors and ...  相似文献   

16.
Complex structures from nanoparticles are found in rocks, soils, and sea sediments but the mechanisms of their formation are poorly understood, which causes controversial conclusions about their genesis. Here we show that graphene quantum dots (GQDs) can assemble into complex structures driven by coordination interactions with metal ions commonly present in environment and serve a special role in Earth's history, such as Fe3+ and Al3+. GQDs self‐assemble into mesoscale chains, sheets, supraparticles, nanoshells, and nanostars. Specific assembly patterns are determined by the effective symmetry of the GQDs when forming the coordination assemblies with the metal ions. As such, maximization of the electronic delocalization of π‐orbitals of GQDs with Fe3+ leads to GQD‐Fe‐GQD units with D2 symmetry, dipolar bonding potential, and linear assemblies. Taking advantage of high electron microscopy contrast of carbonaceous nanostructures in respect to ceramic background, the mineralogical counterparts of GQD assemblies are found in mineraloid shungite. These findings provide insight into nanoparticle dynamics during the rock formation that can lead to mineralized structures of unexpectedly high complexity.  相似文献   

17.
Dr. Run Long 《Chemphyschem》2013,14(3):579-582
We investigated the interfacial electronic structure and charge transfer properties of graphene quantum dot (GQD) physisorption and chemisorption on the TiO2 (110) surface from density functional theory calculations. The simulations show that a slight charge transfer occurs in physisorption case while a significant charge transfer takes place in chemisorption configuration. We present a detailed comparison of the similarities and differences between the electronic structures. The similarities originate from the positive work function difference in both the physisorption and chemisorption configurations, which is able to drive electron transfer from GQD into TiO2, leading to charge separation across the GQD–TiO2 interface. The differences stem from the interaction between the GQD and TiO2 substrate. For example, GQD bounds to TiO2 surface through van der Waals interactions in the case of physisorption. In the chemisorption configuration, however, there exists strong covalent bonding between them. This leads to much more efficient charge separation for chemisorption than for physisorption. Furthermore, the GQD–TiO2 composites show large band‐gap narrowing that could extend the optical absorption edge into the visible‐light region. This should imply that chemisorbed GQDs produce a composite with better photocatalytic and photovoltaic performance than composites formed through physisorption.  相似文献   

18.
Solvothermal reaction of 5,5′-(pyridine-2,6-diylbis(oxy))diisophthalic acid (H4L) with europium(III) or terbium(III) nitrates in acetonitrile-water (1 : 1) at 120 °C gave rise to isostructural 2D coordination polymers, [Ln(HL)(H2O)3] ( NIIC-1-Eu and NIIC-1-Tb ), the layers of which are composed by eight-coordinated lanthanide(III) ions interconnected by triply deprotonated ligands HL3−. The layers are packed in the crystal without any specific intermolecular interactions between them, allowing the facile preparation of stable water suspensions, in which NIIC-1-Tb exhibited top-performing sensing properties through luminescence quenching effect with exceptionally low detection limits towards Fe3+ (LOD 8.62 nM), ofloxacin (OFX) antibiotic (LOD 3.91 nM) and cotton phytotoxicant gossypol (LOD 2.27 nM). In addition to low detection limit and high selectivity, NIIC-1-Tb features fast sensing response (within 60–90 seconds), making it superior to other MOF-based sensors for metal cations and organic toxicants. The photoluminescence quantum yield of NIIC-1-Tb was 93 %, one of the highest among lanthanide MOFs. Mixed-metal coordination polymers NIIC-1-EuxTb1−x demonstrated efficient photoluminescence, the color of which could be modulated by the excitation wavelength and time delay for emission monitoring (within 1 millisecond). Furthermore, an original 2D QR-coding scheme was designed for anti-counterfeiting labeling of goods based on unique and tunable emission spectra of NIIC-1-Ln coordination polymers.  相似文献   

19.
The synthesis and photoluminescence properties of the bright‐yellow organocerium complex [{(Cp )2Ce(μ‐Cl)}2] (Cp =1,3‐di(tert‐butyl)cyclopentadienyl) are presented. This coordination compound exhibits highly efficient photoluminescence within the yellow‐light wavelength range, with a high internal quantum yield of 61(±2) % at room temperature. The large red shift is attributed to the delocalizing ability of the aromatic ligands, whilst its quantum yield even makes this compound competitive with Ce3+‐activated LED phosphors in terms of its photoluminescence efficiency (disregarding its thermal stability). A bridging connection between two crystallographically independent Ce3+ ions is anticipated to be the reason for the highly efficient photoluminescence, even up to room temperature. The emission spectrum is characterized by two bands in the orange‐light range at both 10 K and room temperature, which are attributed to the parity‐allowed transitions 5d1(2D3/2)→4f1(2F7/2) and 5d1(2D3/2)→4f1(2F5/2) of Ce3+, respectively. The photoluminescence spectra were interpreted in relation to the structure and vibrational modes of the coordination compound. The spectra and optical properties indicate that trivalent cerium ions are the dominant species in the ground state, which also resolves an often‐encountered ambiguity in organocerium compounds. This result shows that photoluminescence spectroscopy is a versatile tool that can help elucidate the oxidation state of Ce in such compounds.  相似文献   

20.
采用非热注法成功制备了高质量的油溶性CuInS2/ZnS核壳量子点,量子点的荧光发射峰在可见光到近红外范围内可调(550~800 nm),且荧光量子产率最高达80%。本文进一步利用具有温敏特性的聚丙烯酰胺胶束作相转移剂,成功地将油溶性的CuInS2/ZnS核壳量子点转移入水相。水相中自组装形成的CuInS2/ZnS量子点-胶束复合物不仅具有良好的荧光性质,而且胶束原有的灵敏的热响应性被保留。这些研究初步表明,无镉的低毒的CuInS2/ZnS量子点可作为纳米胶束的荧光示踪探针。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号