首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A series of lanthanide(III) pyrrolidine dithiocarbamate complexes [Ln(Pyrrol-Dtc)3(Phen)] {Pyrrol-Dtc = pyrrolidine dithiocarbamate; Phen = 1,10-phenanthroline; Ln = La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Er(III)} have been synthesized and structurally characterized. The molecular structures of [La(Pyrrol-Dtc)3(Phen)], [Pr(Pyrrol-Dtc)3(Phen)], [Sm(Pyrrol-Dtc)3(Phen)], and [Dy(Pyrrol-Dtc)3(Phen)] have been confirmed using single crystal XRD studies. The results reveal that in these complexes, the central Ln(III) ion is coordinated to three Pyrrol-Dtc and one Phen and possesses a distorted dodecahedron geometry. Catalytic activity of these complexes in trimethylsilylcyanation reaction has been studied.  相似文献   

2.
A poly(L-methionine) modified electrode, fabricated by electrochemical immobilization of the L-methionine on a glassy carbon electrode, was used for simultaneous determination of dopamine and epinephrine through cyclic voltammetry. The electrochemical properties of dopamine and epinephrine have been investigated. This sensor gave two separated cathodic peaks at −0.282 and 0.112 V for EP and DA, respectively. A linear response was obtained in the range of 5.0 × 10−7 to 1.0 × 10−4 mol l−1 for epinephrine, and 1.0 × 10−6 to 5.0 × 10−4 mol l−1 for dopamine. The detection limits were 3.6 × 10−7 mol l−1 and 4.2 × 10−7 mol l−1 for epinephrine and dopamine, respectively. This method was successfully applied for simultaneous determination of dopamine and epinephrine in human urines. The text was submitted by the authors in English.  相似文献   

3.
Two new lead(II) complexes containing nitrite, [Pb(L)2(NO2)2], L?=?1,10-phenanthroline (phen) or 2,2′-bipyridine (bpy), have been synthesized and characterized. The crystal structure of [Pb(phen)2(NO2)2] shows monomeric units. The coordination number is eight (four from “phen” ligands and four nitrite anions), weak interaction of lead(II) with oxygen atoms of adjacent molecules produce dimer units in the solid state. The arrangement of ligands exhibits a coordination hole around the lead(II), occupied possibly by a stereoactive lone pair of electrons on lead(II), and the coordination around lead is hemidirected. There is a π–π stacking interaction between the parallel aromatic rings that may help to increase the “gap” around lead(II).  相似文献   

4.
In this study, a novel modified glassy carbon electrode with copper polydopamine complex/multiwalled carbon nanotubes (GCE/Cu2+@PDA-MWCNTs) was fabricated and used for voltammetric determination of ascorbic acid (AA), dopamine (DA), acetaminophen (AC), nitrite (Nit), and xanthine (XN). Different techniques such as field emission electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy were performed for characterization of the GCE/Cu2+@PDA-MWCNTs. Different electrochemical methods such as cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV) methods were employed to study the behavior of AA, DA, AC, Nit, and XN on this proposed modified electrode. The proposed modified electrode displays intense and indelible electrooxidation response for simultaneous determination of AA, DA, AC, Nit, and XN to five well-separated peaks in the potential range from 0.1 to 1.1 V using CV and DPV methods in phosphate buffer solution with pH 2.0. Under the optimum conditions, the calibration curves were liner up to 175, 125, 75, 150, and 115 μM with detection limits of 0.82, 0.45, 0.87, 0.92, and 0.67 μM for AA, DA, AC, Nit, and XN, respectively. This sensor was used to successfully determine these compounds in human urine and serum samples.
Graphical abstract ?
  相似文献   

5.
手性氨基醇被广泛应用在药物合成、外消旋体拆分[1 ] 等领域[2 - 4 ] 。本文报道了含四氢吡咯基的手性氨基醇配体 (HL )的铜配合物(C2 4 H2 4 NO) 2 Cu·CH3CN的电化学合成和晶体结构。1 实验部分1 .1 试剂与仪器试剂均为分析纯 ,S ( 1 苄基 2四氢吡咯基 ) 二苯基甲醇 (HL ,结构见图 1 )按文献方法合成[5] ,并经IR、MS、1 HNMR和元素分析测试 ,产率 5 2 %。溶剂均按标准方法进行精制。:Nicolet5 5 0FT IR光谱仪 (KBr压片 ) ;CarloErbaMOD 1 1 0 6型元素分析仪 ;HITACHIS 5 70扫描电镜 ;1 .2 配合物的电化学合成[6]阳…  相似文献   

6.
An electrochemical sensor based on modification of carbon paste electrode by glutathione‐capped copper nanoclusters silica nanoparticles (CuNCs/SiO2NPs) composite for determination of dopamine in the presence of ascorbic acid was presented. Transmission electron microscopy, scanning electron microscopy, energy dispersive X‐Ray analysis, X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray diffraction and electrochemical impedance spectroscopy were used for characterization of the developed electrode. The electrochemical behavior of dopamine on CuNCs/SiO2NPs/carbon paste electrode was investigated by cyclic voltammetry and differential pulse voltammetry. Dopamine was determined in the range of 10.0 – 900.0 μM, and the limit of detection was obtained as 0.43 μM. The electrochemical behaviors of the coexisting electroactive species, which often cause interference with the determination of dopamine, were investigated. The results show that the developed electrode does not show any interference with respect to coexisting species, even in the presence of ascorbic acid. The developed electrochemical sensor was further employed for the determination of dopamine in human blood plasma, with a good recovery.  相似文献   

7.
聚L-色氨酸修饰电极的制备及对多巴胺的测定   总被引:14,自引:8,他引:14  
研究了聚L 色氨酸修饰玻碳电极的制备及其多巴胺在该修饰电极上的循环伏安特性,建立了循环伏安法测定多巴胺的电化学分析新方法。在pH7.0的磷酸盐缓冲溶液中,用该电极测定多巴胺的线性范围为:2.0×10-6~5.0×10-4mol L,检测限为1.5×10-7mol L。已用于药剂中多巴胺的测定。  相似文献   

8.
Based on thermal stability and volatility of 1-phenyl-3-methyl-4-benzoyl-5-pyrazone (PMBP) chelate, a novel method was described for the determination of Cr(III) and Cr(VI) by low-temperature electrothermal vaporization (LETV) combined with inductively coupled plasma mass spectrometry (ICP-MS). It was found that Cr(III) could be rapidly formed in a graphite furnace, and quantitatively vaporized into ICP at a relatively low temperature of 1000 °C with the use of PMBP as a chemical modifier, while Cr(VI) was retained in the graphite tube. Thus, the separation of Cr(III) and Cr(VI) could be realized. The main factors affecting the formation and vaporization of Cr(III)-PMBP chelate were investigated in detail. Under the optimized conditions, the detection limit of Cr(III) for this method was 0.031 ng mL−1 and the relative standard deviation (RSD) for 1.0 ng mL−1 Cr(III) was 5.3% (n = 9, v = 10 μL). The linear range of calibration curve spanned three orders of magnitude. The proposed method was applied to the determination of Cr(III) and Cr(VI) in water samples with satisfactory results.  相似文献   

9.
The ionic liquid [hmim][PF6] has been demonstrated as an efficient and environmentally-friendly reaction medium for the enantioselective allylation of aldehydes via a chiral indium(III) complex. The allylation of a variety of aromatic, α,β-unsaturated and aliphatic aldehydes resulted in moderate to good yields and enantioselectivities (upto 92% ee).  相似文献   

10.
A Cu(II) complex with mixed ligands, [Cu3(mal)3(phen)3(H2O)2]?·?11H2O (mal?=?malonate, phen?=?1,10-phenanthroline) was synthesized and characterized by elemental analysis, IR, UV, electron paramagnetic resonance (EPR) and luminescence spectra and single-crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group Cc with a?=?13.1631(10)?Å, b?=?20.1089(10)?Å, c?=?20.1267(13)?Å, β?=?103.500(3)°, V?=?5180.2(6)?Å3, Z?=?4, and R 1?=?0.0476 for 7993 observed reflections. In the complex, one Cu is coordinated by a mal dianion and a phen molecule, exhibiting N2O2 square-planar geometry, while the other two Cu atoms are coordinated, respectively, by a mal dianion, a phen and water molecules, exhibiting N2O3 square pyramidal coordination geometry.  相似文献   

11.
The electrochemical redox behavior of Fe(II)/Fe(III) systems formed during the oxidation of complexes [Fe(C7H4NO3S)2(H2O)4] · 2H2O (Fe-sac) and [Fe(C7H4NO3S)2(C12H8N2] · 2H2O (Fe-sac-phen) have been investigated using cyclic voltammetry in the aqueous medium. In the CVs one pair of well-defined cathodic and anodic peaks appear for the transfer of single electron in the Fe-sac complex. The peak potentials are much wider separated as compared with the free (uncoordinated) Fe(II)/Fe(III) system. The ΔE values demonstrate that the electrode process is irreversible. In the presence of secondary ligand, 1,10-phenanthroline (Fe-sac-phen complex), the redox behavior of iron complexes is quasireversible. The effect of pH on the redox behavior of iron system is studied in acetate buffer. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 12, pp. 1504–1509. The text was submitted by author in English  相似文献   

12.
《中国化学会会志》2018,65(9):1082-1089
In this work, a screen‐printed carbon electrode (SPCE) was modified with a cobalt/porous silicon (Co@PSi) nanocomposite powder to develop a nonenzymatic sensor for the detection of hydrogen peroxide. The Co@PSi nanocomposite was synthesized through the chemical reaction between silicon powder in a HF/HNO3 solution and cobalt cations. In this process, cobalt nanoparticles were anchored on the porous silicon. The structure and morphology of the synthesized nanocomposite were investigated by X‐ray diffraction, Fourier transform infrared spectroscopy, X‐ray photoemission spectroscopy, energy dispersive X‐ray spectroscopy, and field‐emission scanning electron microscopy. The constructed nonenzymatic, screen‐printed sensors based on the Co@PSi nanocomposite showed perfect electrocatalytic oxidation response to hydrogen peroxide over the range 1–170 and 170–3,770 μmol/L with the limit of detection of 0.8 μmol/L. In addition, the Co@PSi‐SPCE sensor exhibited good selectivity for the determination of H2O2 in the presence of common interfering species including glucose, ascorbic acid, uric acid, dopamine, nitrate, and nitrite ions. The constructed electrochemical sensor was successfully used for the determination of H2O2 in real samples.  相似文献   

13.
A mixed ligand complex of Cu(II) with 1,10-phenanthroline and succinate has been synthesized from the reaction of hydrated copper nitrate, succinate, and 1,10-phenanthroline. The nature of bonding and the structure of the complex were characterized by elemental analyses, infrared spectrum, TGA/DTA, and X-ray diffraction. The crystal crystallizes in triclinic space group P 1. The complex is polymeric and the geometry around each copper varies from square planar to distorted square pyramidal or octahedral. Each copper coordinates two oxygens of succinate and two nitrogens of 1,10-phenanthroline. The thermal decomposition of the complex has also been studied by TGA and DTA under inert atmosphere.  相似文献   

14.
The potential of thermal lens spectrometry in the determination of stability constants of complex compounds was explored using copper(I) and iron(II) complexes with 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline as examples. Thermal lens spectrometry offers advantages over conventional spectrophotometry in the determination of stability constants both in aqueous and nonaqueous media. The overall and stepwise stability constants of iron(II) tris(1,10-phenanthrolinate), copper(I) bis(2,9-dimethyl-1,10-phenanthrolinate), and copper(I) bis(1,10-phenanthrolinate) were determined at levels as low as 10−8–10−6 mol L−1.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 123–133, January, 2005.  相似文献   

15.
NOO-type tridentate Schiff base, N-salicylidene-2-aminobenzoic acid, (H2L), and its ternary Cu (II) complex containing H2L Schiff base and 4,7-dimethyl-1,10-phenanthroline (4,7-dmphen), [Cu(4,7-dmphen)(H2L)]27H2O, have been synthesized and characterized by CHN analysis, ESI-MS, FTIR, and single-crystal X-ray diffraction techniques. The interaction of alone H2L Schiff base ligand and ternary Cu (II) complex with biomacramolecules {calf thymus DNA (CT-DNA) and bovine serum albumin (BSA)} has been investigated by electronic absorption and fluorescence spectroscopy. The experimental results indicate that H2L Schiff base ligand and ternary Cu (II) complex bind to CT-DNA by means of a moderate intercalation mode. Furthermore, the fluorescence quenching mechanism between H2L Schiff base ligand and ternary Cu (II) complex with BSA possesses a static quenching process. Radical scavenging activity of H2L Schiff base ligand and ternary Cu (II) complex was measured in terms of EC50, using the DPPH and H2O2 methods. Biomacromolecule interactions and scavenging activity studies revealed that ternary Cu (II) complex yielded better results than H2L Schiff base ligand alone.  相似文献   

16.
A novel Cu-zeolite A/graphene modified glassy carbon electrode for the simultaneous electrochemical determination of dopamine (DA) and ascorbic acid (AA) has been described. The Cu-zeolite A/graphene composites were prepared using Cu2+ functionalized zeolite A and graphene oxide as the precursor, and subsequently reduced by chemical agents. The composites were characterized by X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy. Based on the Cu-zeolite A/graphene-modified electrode, the potential difference between the oxidation peaks of DA and AA was over 200 mV, which was adequate for the simultaneous electrochemical determination of DA and AA. Also the proposed Cu-zeolite/graphene-modified electrode showed higher electrocatalytic performance than zeolite/graphene electrode or graphene-modified electrode. The electrocatalytic oxidation currents of DA and AA were linearly related to the corresponding concentration in the range of 1.0 × 10−7–1.9 × 10−5 M for DA and 2.0 × 10−5–2.0 × 10−4 M for AA. Detection limits (<!-- no-mfc -->S/N<!-- /no-mfc --> = 3) were estimated to be 4.1 × 10−8 M for DA and 1.1 × 10−5 M for AA, respectively.  相似文献   

17.
A novel taurine modified glassy carbon electrode was prepared by electropolymerization method. The electrochemical behaviors of epinephrine (EP) and dopamine (DA) at the modified electrode were studied by cyclic voltammetry. The modified electrode exhibited enhanced sensitivity and excellent electrochemical discrimination to DA and EP. The cathodic peaks of the two species were well-separated with a potential difference of about 390 mV, so the poly(taurine) modified electrode was used for simultaneous voltammetric measurement of EP and DA by differential pulse voltammetry. Under the optimum conditions, the cathodic peak currents were linear to concentrations of EP and DA in the range of 2.0 × 10−6 to 6.0 × 10−4 mol L−1 and 1.0 × 10−6 to 8.0 × 10−4 mol L−1, respectively. The detection limits for EP and DA were 3.0 × 10−7 and 1.0 × 10−7 mol L−1, respectively. Because the oxidation of ascorbic acid (AA) is an irreversible reaction at modified electrode, the interference of AA for determining EP and DA was eliminated. The modified electrode has been satisfactorily used for the simultaneous determination of EP and DA in pharmaceutical injections.  相似文献   

18.
(1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene)copper(I) chloride (1) was prepared by the reaction of 1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride and copper(I) oxide in refluxing tetrahydrofuran. In contrast to previously published methods of preparation of N-heterocyclic carbene complexes of copper(I) halides, this synthesis requires neither an inert atmosphere nor scrupulously dry solvents. The structure of 1 was determined by elemental analysis, 1H and 13C NMR, and a single-crystal X-ray diffraction study. The X-ray crystal data reveal linear coordination about the copper(I) center and linear chains of molecules formed with intermolecular head-to-tail C–H···Cl interactions.  相似文献   

19.
A new series of bimetallic bis(diphenylphosphino)acetylene-bridged copper(I) 1,10-phenanthroline complexes, [Cu2(dppa)2(L)2](BF4)2; L?=?1,10-phenanthroline (1); 4-methyl-1,10-phenanthroline (2); 4,7-dimethyl-1,10-phenanthroline (3); and 2,9-dimethyl-1,10-phenanthroline (4), have been prepared and characterized by spectroscopic methods. The X-ray structures of 1 and 4 were determined. The structures consist of centrosymmetric bimetallic 10-membered chair-like dimetallacycles. In 1, intermolecular C–H?π interactions result in bending of the phenanthroline ligand and sterically induced lengthening of one Cu–P bond. In 1–4, the 31P NMR downfield coordination shift, relative to the free ligand, correlates with the basic strength of the 1,10-phenanthroline ligands.  相似文献   

20.
The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetramethylacrylate-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-di ene (L1) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L2) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L1: PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L1 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb3+ ions with limits of detection of 3.4 × 10−8 mol L−1 for PME and 5.7 × 10−9 mol L−1 for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb3+ ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb3+ ions in tap water and various binary mixtures with quantitative results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号