首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using computer model building, the three-dimensional structure of an enzyme from Streptomyces R61 that is inhibited by ß-lactam antibiotics has been constructed starting from incomplete X-ray crystallographic data for this 37.4 kDa protein. The so-called DD-peptidase catalyzes transpeptidation and hydrolysis of peptides terminating in D-Ala-D-Ala and is a model for bacterial transpeptidases and carboxypeptidases essential in the biosynthesis of the peptidoglycan layer of the cell wall. The structure, which was completed with the SYBYL molecular modeling package, has been refined by energy minimization and molecular dynamics using Quanta/CHARMm software. A simulation of 105 ps was run with waters of solvation in the active site. From these computations, the interatomic distances between the active serine and key residues around the active site were determined. Inadequacies at reproducing geometric details of the ß-lactam ring of a cephalosporin are pointed out which are typical of most commercially available force fields.  相似文献   

2.
Penicillin-binding protein 5 (PBP 5) of Escherichia coli hydrolyzes the terminal D-Ala-D-Ala peptide bond of the stem peptides of the cell wall peptidoglycan. The mechanism of PBP 5 catalysis of amide bond hydrolysis is initial acylation of an active site serine by the peptide substrate, followed by hydrolytic deacylation of this acyl-enzyme intermediate to complete the turnover. The microscopic events of both the acylation and deacylation half-reactions have not been studied. This absence is addressed here by the use of explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations. The potential-energy surface for the acylation reaction, based on MP2/6-31+G(d) calculations, reveals that Lys47 acts as the general base for proton abstraction from Ser44 in the serine acylation step. A discrete potential-energy minimum for the tetrahedral species is not found. The absence of such a minimum implies a conformational change in the transition state, concomitant with serine addition to the amide carbonyl, so as to enable the nitrogen atom of the scissile bond to accept the proton that is necessary for progression to the acyl-enzyme intermediate. Molecular dynamics simulations indicate that transiently protonated Lys47 is the proton donor in tetrahedral intermediate collapse to the acyl-enzyme species. Two pathways for this proton transfer are observed. One is the direct migration of a proton from Lys47. The second pathway is proton transfer via an intermediary water molecule. Although the energy barriers for the two pathways are similar, more conformers sample the latter pathway. The same water molecule that mediates the Lys47 proton transfer to the nitrogen of the departing D-Ala is well positioned, with respect to the Lys47 amine, to act as the hydrolytic water in the deacylation step. Deacylation occurs with the formation of a tetrahedral intermediate over a 24 kcal x mol(-1) barrier. This barrier is approximately 2 kcal x mol(-1) greater than the barrier (22 kcal x mol(-1)) for the formation of the tetrahedral species in acylation. The potential-energy surface for the collapse of the deacylation tetrahedral species gives a 24 kcal x mol(-1) higher energy species for the product, signifying that the complex would readily reorganize and pave the way for the expulsion of the product of the reaction from the active site and the regeneration of the catalyst. These computational data dovetail with the knowledge on the reaction from experimental approaches.  相似文献   

3.
Mechanistic aspects of lipase-catalyzed ring-opening polymerization (ROP) of lactones to give polyesters are discussed from accumulated experimental data and new insight. Comparison of the ROP reactivity by lipase catalyst with the anionic ROP reactivity by a metal-catalyst clearly demonstrates the characteristics of lipase catalysis; the larger ring-sized monomers with lower ring strain showed higher polymerizability than medium ring-sized ones, in contrast to the anionic ROP showing the reverse direction where the ring strain of monomer is operative. The enzyme-catalysis involves an acyl-enzyme intermediate formation as a key-step. From the copolymerization results a new mechanism is proposed, that involves the formation of the acyl-enzyme intermediate (acylation step) and/or the nucleophilic attack of the propagationg alcohol end to the carbonyl carbon of the intermediate to open the monomer ring (deacylation step) as the rate-determining step. The structure of the propagating alcohol end (primary or secondary) affects much on which step is more operative.  相似文献   

4.
The origin of the substantial difference in deacylation rates for acyl-enzyme intermediates in penicillin-binding proteins (PBPs) and beta-lactamases has remained an unsolved puzzle whose solution is of great importance to understanding bacterial antibiotic resistance. In this work, accurate, large-scale mixed ab initio quantum mechanical/molecular mechanical (QM/MM) calculations have been used to study the hydrolysis of acyl-enzyme intermediates formed between cephalothin and the dd-peptidase of Streptomyces sp. R61, a PBP, and the Enterobacter cloacae P99 cephalosporinase, a class C beta-lactamase. Qualitative and, in the case of P99, quantitative agreement was achieved with experimental kinetics. The faster rate of deacylation in the beta-lactamase is attributed to a more favorable electrostatic environment around Tyr150 in P99 (as compared to that for Tyr159 in R61) which facilitates this residue's function as the general base. This is found to be in large part accomplished by the ability of P99 to covalently bind the ligand without concurrent elimination of hydrogen bonds to Tyr150, which proves not to be the case with Tyr159 in R61. This work provides an essential foundation for further work in this area, such as selecting mutations capable of converting the PBP into a beta-lactamase.  相似文献   

5.
Penicillin-binding proteins (PBPs) are responsible for the final stages of bacterial cell wall assembly. These enzymes are targets of beta-lactam antibiotics. Two of the PBP activities include dd-transpeptidase and DD-carboxypeptidase activities, which carry out the cross-linking of the cell wall and trimming of the peptidoglycan, the major constituent of the cell wall, by an amino acid, respectively. The activity of the latter enzyme moderates the degree of cross-linking of the cell wall, which is carried out by the former. Both these enzymes go through an acyl-enzyme species in the course of their catalytic events. Compound 6, a cephalosporin derivative incorporated with structural features of the peptidoglycan was conceived as an inhibitor specific for DD-transpeptidases. On acylation of the active sites of dd-transpeptidases, the molecule would organize itself in the two active site subsites such that it mimics the two sequestered strands of the bacterial peptidoglycan en route to their cross-linking. Hence, compound 6 is the first inhibitor conceived and designed specifically for inhibition of DD-transpeptidases. The compound was synthesized in 13 steps and was tested with recombinant PBP1b and PBP5 of Escherichia coli, a dd-transpeptidase and a dd-carboxypeptidase, respectively. Compound 6 was a time-dependent and irreversible inhibitor of PBP1b. On the other hand, compound 6 did not interact with PBP5, neither as an inhibitor (reversible or irreversible) nor as a substrate.  相似文献   

6.
A large amount of experimental as well as theoretical information is available about the mechanism of serine proteases, but many questions remain unanswered. Here we study the deacylation step of the reaction mechanism of elastase. The water molecule in the acyl-enzyme active site, the binding mode of the carbonyl oxygen in the oxyanion hole, the characteristics of the tetrahedral intermediate structure, and the mobility of the imidazole ring of His-57 were studied with quantum mechanical/molecular mechanical methods. The models are based on a recent high-resolution crystal structure of the acyl-enzyme intermediate. The nucleophilic water in the active site of the acyl-enzyme has been shown to have two minima that differ by only 2 kcalmol−1 in energy. The carbonyl group of the acyl-enzyme is located in the oxyanion hole and is positioned for attack by the hydrolytic water. The tetrahedral intermediate is a weakly bonded system, which is electrostatically stabilized by short hydrogen bonds to the backbone NH groups of Gly-193 and Ser-195 in the oxyanion hole. The short distance between the Nɛ2 of His-57 and the Oγ of Ser-195 in the tetrahedral intermediate indicates a small movement of the imidazole ring towards the product in the deacylation step. The carbonyl group of the enzyme-product complex is not held strongly in the oxyanion hole, which shows that the peptide is first released from the oxyanion hole before it leaves the active site to regenerate the native state of the enzyme. Received: 11 September 2000 / Accepted: 15 September 2000 / Published online: 21 March 2001  相似文献   

7.
Kinetic and thermodynamic parameters were evaluated for the acylation and the deacylation steps in the hydrolysis of p-nitrophenyl acetate by alpha-chymotrypsin at pH 7.8 and at temperatures between 15 and 35 degrees C by the use of stopped-flow and ordinary ultraviolet spectrophotometers. In contrast to the temperature dependencies of k2 and Ks reported in the literature (P.A. Adams and E.R. Swart, Biochem. J., 161, 83 (1977], no kinetic anomaly was observed in either of the steps, but reasonable straight lines were obtained in both Arrhenius and van't Hoff plots. On the other hand, in the chymotryptic hydrolysis of N-benzoyl-L-alanine methyl ester a sharp kinetic anomaly was found. The discrepancy in the case of p-nitrophenyl acetate is discussed in connection with a possible conformational change of the enzyme, an alteration of the rate-limiting step or differences in the experimental procedures. The cause of the anomaly observed in the case of N-benzoyl-L-alanine methyl ester is also discussed in detail.  相似文献   

8.
We present results from ab initio and density functional theory studies of the mechanism for serine hydrolase catalyzed ester hydrolysis. A model system containing both the catalytic triad and the oxyanion hole was studied. The catalytic triad was represented by formate anion, imidazole, and methanol. The oxyanion hole was represented by two water molecules. Methyl formate was used as the substrate. In the acylation step, our computations show that the cooperation of the Asp group and oxyanion hydrogen bonds is capable of lowering the activation barrier by about 15 kcal/mol. The transition state leading to the first tetrahedral intermediate in the acylation step is rate limiting with an activation barrier (ΔE0) of 13.4 kcal/mol. The activation barrier in the deacylation step is smaller. The double-proton-transfer mechanism is energetically unfavorable by about 2 kcal/mol. The bonds between the Asp group and the His group, and the hydrogen bonds in the oxyanion hole, increase in strength going from the Michaelis complex toward the transition state and the tetrahedral intermediate. In the acylation step, the tetrahedral intermediate is a very shallow minimum on the energy surface and is not viable when molecular vibrations are included. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 89–103, 1998  相似文献   

9.
Glycosylasparaginase catalyzes the hydrolysis of the N-glycosylic bond between N-acetyl-D-glucosamine and L-asparagine in the catabolism of glycoproteins. The mechanism has been proposed to resemble that of serine proteases involving an acylation step where a nucleophilic attack by a catalytic Thr residue on the carbonyl carbon of the N-glycosylic bond gives rise to a covalent beta-aspartyl-enzyme intermediate, and a deacylation step to give the final products. The question posed in this study was: Is the acylation step the rate-limiting step in the hydrolysis reaction as in serine proteases? To answer this question a series of mostly new substituted anilides was synthesized and characterized, and their hydrolysis reactions catalyzed by glycosylasparaginase from human amniotic fluid were studied. Five N4-(4'-substituted phenyl)-L-asparagine compounds were synthesized and characterized: 4'-hydrogen, 4'-ethyl, 4'-bromo, 4'-nitro, and 4'-methoxy. Each of these anilides was a substrate for the enzyme. Hammett plots of the kinetic parameters showed that acylation is the rate-limiting step in the reaction and that upon binding the electron distribution of the substrate is perturbed toward the transition state. This is the first direct evidence that acylation is the rate-limiting step in the enzyme-catalyzed reaction. A Br?nsted plot indicates a small, negative charge (-0.25) on the nitrogen atom of the leaving group anilines containing electron-withdrawing groups, and a small, positive charge (0.43) on the nitrogen atom of the leaving group anilines containing electron-donating groups. The free energy (incremental) change of binding (delta deltaGb) in the enzyme-substrate transition state complexes shows that substitution of a substituted phenyl group for the pyranosyl group in the natural substrate results in an overall loss of binding energy equivalent to a weak hydrogen bond, the magnitude of which is dependent on the substituent group. The data are consistent with a mechanism for glycosylasparaginase involving rapid formation of a tetrahedral structure upon substrate binding, and a rate-limiting breakdown of the tetrahedral structure to a covalent beta-aspartyl-enzyme intermediate that is dependent on the electronic properties of the substituent group and on the degree of protonation of the leaving group in the transition state by a general acid.  相似文献   

10.
Peptidoglycan glycosyltransferases are highly conserved bacterial enzymes that catalyze glycan strand polymerization to build the cell wall. Because the cell wall is essential for bacterial cell survival, these glycosyltransferases are potential antibiotic targets, but a detailed understanding of their mechanisms is lacking. Here we show that a synthetic peptidoglycan fragment that mimics the elongating polymer chain activates peptidoglycan glycosyltransferases by bypassing the rate-limiting initiation step.  相似文献   

11.
The interactions between Staphylococcus aureus PC1 enzyme and compounds bearing a methoxy group on the α-face of the β-lactam ring (cefmetazole ( 1 ), moxalactam ( 2 ) and cefoxitin ( 3 )) were studied. With these compounds, a partitioning of the acyl-enzyme between deacylation and a transiently inactivated form of the enzyme were observed. The individual microscopic rate constants were determined, indicating for 1 and 3 that k3>k3 (Scheme 1), whereas for 2 k3k3. This different behavior could be attributed to the presence of the α-carboxy group at the C(7) side chain of 2 , which is able to act as a general-base catalyst in the deacylation step. Molecular-modelling studies allowed correlation of KS and k2 with the structures of the Henri-Michaelis complexes that these compounds formed with the S. aureus enzyme. The acylation rate constant (k2) for these `β-lactamase-stable' compounds was lower than that observed with substrates lacking the methoxy group. Molecular-modelling studies indicated that the methoxy group increases the displacement of the crystallographically observed water molecule (Wat81), which is involved in the acylation mechanism. On the other hand, an average of the most important interactions in the Henri-Michaelis complexes was related to KS. An increase of 0.2 – 0.5 Å in this average value was found to result in an increase in KS by about one order of magnitude.  相似文献   

12.
The acylation step of the catalytic mechanism of beta-lactamases and penicillin-binding proteins (PBPs) has been studied with various approaches. The methods applied range from molecular dynamics (MD) simulations to multiple titration calculations using the Poisson-Boltzmann approach to quantum mechanical (QM) methods. The mechanism of class A beta-lactamases was investigated in the greatest detail. Most approaches support the critical role of Glu-166 and hydrolytic water in the acylation step of the enzymatic catalysis in class A beta-lactamases. The details of the catalytic mechanism have been revealed by the QM approach, which clearly pointed out the critical role of Glu-166 acting as a general base in the acylation step with preferred substrates. Lys-73 shuffles a proton abstracted by Glu-166 O(epsilon ) to the beta-lactam nitrogen through Ser-130 hydroxyl. This proton is transferred from O(gamma) of the catalytic Ser-70 through the bridging hydrolytic water to Glu-166 O(epsilon ). Then the hydrogen is simultaneously passed through S(N)2 inversion mechanism at Lys-73 N(zeta) to Ser-130 O(gamma), which loses its proton to the beta-lactam nitrogen. The protonation of beta-lactam nitrogen proceeds with an immediate ring opening and collapse of the first tetrahedral species into an acyl-enzyme intermediate. However, the studies that considered the effect of solvation lower the barrier for the pathway, which utilizes Lys-73 as a general base, thus creating a possibility of multiple mechanisms for the acylation step in the class A beta-lactamases. These findings help explain the exceptional efficiency of these enzymes. They emphasize an important role of Glu-166, Lys-73, and Ser-130 for enzymatic catalysis and shed light on details of the acylation step of class A beta-lactamase mechanism. The acylation step for class C beta-lactamases and six classes of PBPs were also considered with continuum solvent models and MD simulations.  相似文献   

13.
Quantum mechanical calculations reveal the preferred mechanism and origins of chemoselectivity for HOCl-mediated oxidation of zinc-bound thiolates implicated in bacterial redox sensing. Distortion/interaction models show that minimizing geometric distortion at the zinc complex during the rate-limiting nucleophilic substitution step controls the mechanistic preference for OH over Cl transfer with HOCl and the chemoselectivity for HOCl over H2O2.  相似文献   

14.
Butyrylcholinesterase (BChE)-cocaine binding and the fundamental pathway for BChE-catalyzed hydrolysis of cocaine have been studied by molecular modeling, molecular dynamics (MD) simulations, and ab initio calculations. Modeling and simulations indicate that the structures of the prereactive BChE/substrate complexes for (-)-cocaine and (+)-cocaine are all similar to that of the corresponding prereactive BChE/butyrylcholine (BCh) complex. The overall binding of BChE with (-)-cocaine and (+)-cocaine is also similar to that proposed with butyrylthiocholine and succinyldithiocholine, i.e., (-)- or (+)-cocaine first slides down the substrate-binding gorge to bind to Trp-82 and stands vertically in the gorge between Asp-70 and Trp-82 (nonprereactive complex) and then rotates to a position in the catalytic site within a favorable distance for nucleophilic attack and hydrolysis by Ser-198 (prereactive complex). In the prereactive complex, cocaine lies horizontally at the bottom of the gorge. The fundamental catalytic hydrolysis pathway, consisting of acylation and deacylation stages similar to those for ester hydrolysis by other serine hydrolases, was proposed on the basis of the simulated prereactive complex and confirmed theoretically by ab initio reaction coordinate calculations. Both the acylation and deacylation follow a double-proton-transfer mechanism. The calculated energetic results show that within the chemical reaction process the highest energy barrier and Gibbs free energy barrier are all associated with the first step of deacylation. The calculated ratio of the rate constant (k(cat)) for the catalytic hydrolysis to that (k(0)) for the spontaneous hydrolysis is approximately 9.0 x 10(7). The estimated k(cat)/k(0) value of approximately 9.0 x 10(7) is in excellent agreement with the experimentally derived k(cat)/k(0) value of approximately 7.2 x 10(7) for (+)-cocaine, whereas it is approximately 2000 times larger than the experimentally derived k(cat)/k(0) value of approximately 4.4 x 10(4) for (-)-cocaine. All of the results suggest that the rate-determining step of the BChE-catalyzed hydrolysis of (+)-cocaine is the first step of deacylation, whereas for (-)-cocaine the change from the nonprereactive complex to the prereactive complex is rate-determining and has a Gibbs free energy barrier higher than that for the first step of deacylation by approximately 4 kcal/mol. A further analysis of the structural changes from the nonprereactive complex to the prereactive complex reveals specific amino acid residues hindering the structural changes, providing initial clues for the rational design of BChE mutants with improved catalytic activity for (-)-cocaine.  相似文献   

15.
Molecular dynamics simulations using a combined QM/MM potential have been performed to study the catalytic mechanism of human cathepsin K, a member of the papain family of cysteine proteases. We have determined the two-dimensional free energy surfaces of both acylation and deacylation steps to characterize the reaction mechanism. These free energy profiles show that the acylation step is rate limiting with a barrier height of 19.8 kcal/mol in human cathepsin K and of 29.3 kcal/mol in aqueous solution. The free energy of activation for the deacylation step is 16.7 kcal/mol in cathepsin K and 17.8 kcal/mol in aqueous solution. The reduction of free energy barrier is achieved by stabilization of the oxyanion in the transition state. Interestingly, although the "oxyanion hole" has been formed in the Michaelis complex, the amide units do not donate hydrogen bonds directly to the carbonyl oxygen of the substrate, but they stabilize the thiolate anion nucleophile. Hydrogen-bonding interactions are induced as the substrate amide group approaches the nucleophile, moving more than 2 A and placing the oxyanion in contact with Gln19 and the backbone amide of Cys25. The hydrolysis of peptide substrate shares a common mechanism both for the catalyzed reaction in human cathepsin K and for the uncatalyzed reaction in water. Overall, the nucleophilic attack by Cys25 thiolate and the proton-transfer reaction from His162 to the amide nitrogen are highly coupled, whereas a tetrahedral intermediate is formed along the nucleophilic reaction pathway.  相似文献   

16.
Partial acylation of (R,S)-3,7-dimethyloctan-1-ol (1) and (R,S)-7-methoxy-3,7-dimethyloctan-1-ol (2) with vinyl acetate catalyzed by the lipase fromCandida cylindracea affords in good yields the correspondingS-configured acetates with 92–98% enantiomeric excess (ee). Under similar conditions, racemic α-cyclogeraniol (3), drim-7-en-11-ol, methyl 4-(3-hydroxy-2-methylpropyl)benzoate, and its η6-chromium(tricarbonyl) complex (6) are acylated with rather poor (and, for the two latter, opposite) enantioselectivity, whereas (R,S)-2,4∶3,5-di-O-benzylidenexylitol remains unaffected. Racemic isoborneol (8) and 2-nitro-1-phenylethanol also remain almost or completely unconverted. Attempts to perform enantioselective acylation of alcohols 3 and 8 with Ac2O in the presence of porcine pancreatic lipase (PPL) proved equally unsuccessful. By contrast, the PPL-catalyzed acylation of alcohol 6 with vinyl acetate at 17% conversion affords the levorotatory acetate (S)-6a withca. 100%ee. PPL-Mediated partial acylation of (R,S)-pantolactone with Ac2O, followed by mild deacylation of the resultingR acetate, gives (R)-(-)-pantolactone of 97% enantiomeric purity in 60% overall yield. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 175–186, January, 1997.  相似文献   

17.
Beta-lactamases confer bacterial resistance to beta-lactam antibiotics, such as penicillins. The characteristic class C beta-lactamase AmpC catalyzes the reaction with several key residues including Ser64, Tyr150, and Lys67. Here, we describe a 1.07 A X-ray crystallographic structure of AmpC beta-lactamase in complex with a boronic acid deacylation transition-state analogue. The high quality of the electron density map allows the determination of many proton positions. The proton on the Tyr150 hydroxyl group is clearly visible and is donated to the boronic oxygen mimicking the deacylation water. Meanwhile, Lys67 hydrogen bonds with Ser64Ogamma, Asn152Odelta1, and the backbone oxygen of Ala220. This suggests that this residue is positively charged and has relinquished the hydrogen bond with Tyr150 observed in acyl-enzyme complex structures. Together with previous biochemical and NMR studies, these observations indicate that Tyr150 is protonated throughout the reaction coordinate, disfavoring mechanisms that involve a stable tyrosinate as the general base for deacylation. Rather, the hydroxyl of Tyr150 appears to be well positioned to electrostatically stabilize the negative charge buildup in the tetrahedral high-energy intermediate. This structure, in itself, appears consistent with a mechanism involving either Tyr150 acting as a transient catalytic base in conjunction with a neutral Lys67 or the lactam nitrogen as the general base. Whereas mutagenesis studies suggest that Lys67 may be replaced by an arginine, disfavoring the conjugate base mechanism, distinguishing between these two hypotheses may ultimately depend on direct determination of the pK(a) of Lys67 along the reaction coordinate.  相似文献   

18.
β-Lactams, the cornerstone of antibiotherapy, inhibit multiple and partially redundant targets referred to as transpeptidases or penicillin-binding proteins. These enzymes catalyze the essential cross-linking step of the polymerization of cell wall peptidoglycan. The understanding of the mechanisms of action of β-lactams and of resistance to these drugs requires the development of reliable methods to characterize their targets. Here, we describe an activity-based purification method of β-lactam targets based on click and release chemistry. We synthesized alkyne-carbapenems with suitable properties with respect to the kinetics of acylation of a model target, the Ldtfm L,D-transpeptidase, the stability of the resulting acylenzyme, and the reactivity of the alkyne for the cycloaddition of an azido probe containing a biotin moiety for affinity purification and a bioorthogonal cleavable linker. The probe provided access to the fluorescent target in a single click and release step.  相似文献   

19.
20.
Beta-lactamase acquisition is the most prevalent basis for Gram-negative bacteria resistance to the beta-lactam antibiotics. The mechanism used by the most common class A Gram-negative beta-lactamases is serine acylation followed by hydrolytic deacylation, destroying the beta-lactam. The ab initio quantum mechanical/molecular mechanical (QM/MM) calculations, augmented by extensive molecular dynamics simulations reported herein, describe the serine acylation mechanism for the class A TEM-1 beta-lactamase with penicillanic acid as substrate. Potential energy surfaces (based on approximately 350 MP2/6-31+G calculations) reveal the proton movements that govern Ser70 tetrahedral formation and then collapse to the acyl-enzyme. A remarkable duality of mechanism for tetrahedral formation is implicated. Following substrate binding, the pathway initiates by a low energy barrier (5 kcal mol(-1)) and an energetically favorable transfer of a proton from Lys73 to Glu166, through the catalytic water molecule and Ser70. This gives unprotonated Lys73 and protonated Glu166. Tetrahedral formation ensues in a concerted general base process, with Lys73 promoting Ser70 addition to the beta-lactam carbonyl. Moreover, the three-dimensional potential energy surface also shows that the previously proposed pathway, involving Glu166 as the general base promoting Ser70 through a conserved water molecule, exists in competition with the Lys73 process. The existence of two routes to the tetrahedral species is fully consistent with experimental data for mutant variants of the TEM beta-lactamase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号