首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new series of paeonol Schiff base derivatives containing a 1,2,3-triazole moiety were synthesized using the copper(I) catalyzed azide-alkynecycloaddition (CuAAC) reaction and evaluated for their cytotoxicity in vitro against human cervical carcinoma HeLa cells, human lung cancer A549 cells, and human liver cancer HepG2 cells. Unfortunately, all the tested compounds showed poor activities toward the human cervical carcinoma HeLa cells and human liver cancer HepG2 cells. However, compounds (E)-2-(1-(((1-[2-fluorophenyl]-1H-1,2,3-triazol-4-yl)methyl)imino)ethyl)-5-methoxyphenol ( 4c ) and (E)-2-(1-(((1-[3- chlorophenyl]-1H-1,2,3-triazol-4-yl)methyl)imino)ethyl)-5-methoxyphenol ( 4i ) exhibited inhibitory activities toward human lung cancer A549 cells (IC50 = 45.1 μM for 4c and 78.9 μM for 4i ) compared with that of paeonol, which indicated that such paeonol Schiff base derivatives containing a 1,2,3-triazole moiety could be further modified to obtain good cytotoxicity in vitro against human lung cancer A549 cells.  相似文献   

2.
In this study, we designed and synthesized several novel fused [1,2,3]triazolo [4′,5′:3,4]pyrrolo[1,2-a]thieno[2,3-d]pyrimidine derivatives using in a single [3 + 2] reaction cycloaddition reaction of 3-(3-iodoprop-2-yn-1-yl)thieno[2,3-d]pyrimidin-4(3H)-one ( 4 ) followed by C-C bond coupling with various aryl azides in a PEG-400 medium. All of the newly synthesized compounds were evaluated in vitro for EGFR kinase inhibitory action as well as anti-breast cancer activity against MDA-MB-231 and MCF-7 breast cancer cell lines. When compared to the reference molecule, erlotinib, the majority of the compounds demonstrated adequate efficacy. The most promising compounds, 5g and 5i , demonstrated excellent anticancer activity against both cancer cell lines, with IC50 values ranging from 04.17 ± 0.55 to 8.65 ± 0.89 μM, respectively, as well as excellent kinase inhibitory activities (EGFR: IC50 = 0.467 ± 0.063 and 0.412 ± 0.081 μM). The in silico studies of five potent compounds 5f , 5g , 5h , 5i , and 5k were also carried out to identify the interactions against the EGFR receptor and found that the energy calculations were covenant with the obtained IC50 values.  相似文献   

3.
In this study, novel quinazolinones were designed, synthesized, characterized by FT-IR, 1H-NMR, 13C-NMR spectral data, and LC–MS. New compounds inhibitory activities on urease were assessed. All of the compounds exhibited potent urease inhibitory activities. Especially in the synthesized compounds, 2-benzyl-3-({5-[(4-nitrophenyl)amino]-1,3,4-thiadiazol2-yl}methyl)quinazolin-4(3H)-one has the best inhibitory effect against Jack bean urease with IC50 = 3.30 ± 0.09 μg/mL. And also, N-(4-nitrophenyl)-2-[(4-oxoquinazolin-3(4H)-yl)acetyl] hydrazinecarbothioamide, N-(4-fluorophenyl)-2-[(4-oxoquinazolin-3(4H)-yl)acetyl] hydrazinecarbothioamide, and 2-benzyl-3-({5-[(4-fluorophenyl)amino]-1,3,4-thiadiazol-2yl} methyl)quinazolin-4(3H)-one have best activities among the synthesized compounds.  相似文献   

4.
The prevalence of germs that are resistant to many antibiotics is rising rapidly the world over. There is a large group of researchers actively looking for better medicines. Here, we designed two series of hydrazonal and indeno[1,2-b]pyridin-5-one bearing hydrazone and azo-groups to test their antimicrobial activity. Molecular structures of all derivatives were assured based on their spectral data and elemental analyses. Results of the antimicrobial activity of the tested hydrazone and azo compounds showed promising potential for several derivatives. The minimum inhibitory concentrations (MICs) of hydrazones 4a - h and 6a - g displayed good antibacterial reactivities with a range of 3.91–250 μg/mL and moderate antifungal activity with a range of 15.6–500 μg/mL. The most promising hydrazone 4f and azo- 6a compounds demonstrated MIC values against Streptococcus faecalis and Escherichia coli equal to 3.91 and 7.81 μg/mL, respectively. Moreover, azo compound 6a showed MIC value equal to 3.91 μg/mL against Enterobacter cloacae species. Additionally, derivative 4f exhibited a significant inhibitory profile against the E. coli gyrase A enzyme (IC50 = 5.53 μg/mL). On the other hand, compound 6a (IC50 14.05 μg/mL) exhibited the lowest DNA gyrase inhibitory activity as compared to compounds 4f and reference standard drug novobiocin, IC50 5.53 and 1.88 μg/mL, respectively. Pharmacokinetic and pharmacodynamic profiles and molecular docking studies for the two most promising molecules 4f and 6a were computed and revealed that both compounds have good ADME profiles and high binding affinity to DNA gyrase binding site.  相似文献   

5.
16-(1-R-1,2,3-Triazol-4-ylethyl)-, 16-(1-R-1,2,3-triazol-4-ylmethoxymethyl)-, and 16-{2-(1-R-1,2,3-triazol-4-yl)-1-[(1-R-1,2,3-triazol-4-ylmethoxy)ethyl]}-substituted derivatives of methyl lambertianate were synthesized by 1,3-cycloaddition of labdanoid alkynes with azides. The compounds obtained possess considerable cytotoxicity toward the human tumor cell lines CEM-13, MT-4, and U-937. The most active compound, methyl 16-(2-{2-[(1-benzyl-1H-1,2,3-triazol-4-yl)acetyl]furan-3-yl}ethyl)lambertianate, was found to inhibit the viability of the tumor cells by 50% (CCID50) in the concentration of 7–12 μmol L?1.  相似文献   

6.
A novel series of imidazo[1,2-a]pyridine based 1H-1,2,3-triazole derivatives were designed, synthesized, and evaluated for their anticancer activity against two different human cancer cell lines. Most of the synthesized compounds displayed anticancer activity with IC50 values from 2.35 to 120.46 μM. Furthermore, compounds 9b , 9c, 9d, 9f , and 9j showed potent inhibitory activity against cancer cell lines, with IC50 values close to that of standard drug. It is important to note that compound 9d was more potent than the standard drug cisplatin with IC50 values of 10.89 and 2.35 μM against Hela cell line and MCF-7 cell line, respectively.  相似文献   

7.
Abstract

A series of 2-(substituteddithiocarbamoyl)-N-[4-((1H-imidazol-1-yl)methyl)phenyl]acetamide derivatives was designed and synthesized to combat the increasing incidence of drug-resistant fungal infections. All synthesized compounds were characterized by IR, 1H-NMR, 13C-NMR, and HRMS spectra and elemental analyses. Antifungal activity tests were performed against four different fungal strains. Molecular docking studies were performed to investigate the mode of action towards the fungal lanosterol 14α-demethylase, a cytochrome P450-dependent enzyme. ADME studies were carried out and a connection between activities and physicochemical properties of the target compounds was determined. Most of the final compounds exhibited significant activity against Candida albicans and Candida krusei with MIC50 value 12.5?μg/mL. The results of in vitro anti-Candida activity, a docking study and ADME prediction revealed that the newly synthesized compounds have potential anti-Candida activity and evidenced the most active derivative, 5b (2-Pyrrolidinthiocarbonylthio-N-[4-((1H-imidazol-1-yl)methyl)phenyl]acetamide), which can be further optimized as a lead compound.  相似文献   

8.
In the course of our investigations on the development of cardiovascular agents, 3-butyl-2-[2′-(2H-tetrazol-5-yl)bipheny]-4-yl]methyl-2H-1, 2, 4-benzothiadiazine 1, 1-dioxide ( 2 ) was considered as a potential angiotensin II antagonist on the basis of bioisosteric replacement of the quinazoline ring of compound 1 with a 1, 2, 4-benzothiadiazine 1, 1-dioxide ring system. Alkylation of 6 with 4 afforded 7 and 8 in 24% and 28% yields, respectively. An attempt to remove the trityl group of compounds 7 and 8 under acidic condition gave the ring opened products 9 and 11 in 28% and 36% yields, respectively. However, compounds 2 and 10 were obtained in 46% and 85% yields when compounds 7 and 8 were refluxed in methanol. Preliminary assays of compounds 9 and 11 against angiotensin II receptors revealed weak activity with IC50 values of 3.6 μM and 5.4 μM, respectively. Compound 10 (IC50 = 87 nM) exhibited stronger binding affinity than compound 2 (IC50 = 750 nM).  相似文献   

9.
A new series of 4-(4-(1-benzyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-3-yl)quinoline ( 6a-t ) have been synthesized by a click reaction of 4-(4-ethynyl-1-phenyl-1H-pyrazol-3-yl)quinoline ( 4a-d ) with a substituted benzyl azide ( 5a-e ). The starting alkyne derivatives 4a-d are obtained from Bestmann-Ohira reaction of 1-phenyl-3-(quinolin-4-yl)-1H-pyrazole-4-carbaldehyde and dimethyl(1-diazo-2-oxopropyl)phosphonate. The newly synthesized compounds are screened against M. tuberculosis H37Ra dormant and active, Escherichia coli, Pseudomonas fluorescence, Staphylococcus aureus and Bacillus subtilis strains at 30 μg/mL concentration. Most of the screened compounds showed good to moderate antibacterial activity against S. aureus, B. subtilis, and Mycobacterium tuberculosis H37Ra strains. The synthesized derivatives of quinolinyl-pyrazole-4-carbaldehyde and quinolinyl-pyrazole-4-ethyne reportd good to moderate activity against both strains of M. tuberculosis H37Ra. Ten derivatives of quinolinyl-pyrazole presented good activity against B. subtilis. These results suggested that further optimization and development of quinolinyl-pyrazolyl-1,2,3-triazole moeity could serve as lead compounds for antimycobacterial activity.  相似文献   

10.
A series of thirty-six novel 5-(2-(4-(benzo[d]isoxazol-3-yl)piperazin-1-yl)acetyl)indolin-2-one and 5-(2-(4-substitutedpiperazin-1-yl)acetyl)indolin-2-one analogues were synthesized, characterized and screened for their in vitro anti-tubercular activity against Mycobacterium tuberculosis H37Rv strain. These compounds exhibited minimum inhibitory concentration between 1.56 and 50 μg/mL. Among these derivatives, compounds 10c, 10d, 10j, 10o and 10v (MIC 6.25 μg/mL) displayed moderate activity, while compounds 10e, 10l, 10q, 10w,10x, 12d, 12e and 12i (MIC 3.12 μg/mL) showed good anti-tubercular activity and compounds 10f, 10k, 10p, 10r, 12f, 12j and 12k (MIC 1.56 μg/mL) exhibited excellent anti-tubercular activity. In addition, MTT assay was accomplished on the active analogues of the series against mouse macrophage (RAW 264.7) cells to evaluate the cytotoxic effect of the newly synthesized compounds and selectivity index of the compounds was determined.  相似文献   

11.
12.
A series of square planar cyclometalated heteroleptic platinum(II) complexes of the type [(C^N)Pt(O^O)] [where, O^O is a β‐diketonato ligand of acetylacetone (acac), C^N = cyclometalating 7‐(4‐fluorophenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L1), 7‐(4‐chlorophenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L2), 7‐(4‐bromophenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L3), 7‐(4‐methoxyphenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L4), 5‐phenyl‐7‐(p‐tolyl)pyrazolo[1,5‐a]pyrimidine (L5)] have been design, synthesized and characterized. All compounds have been screened for biological studies like in vitro antibacterial, in vitro cytotoxicity, cellular level cytotoxicity, absorption titration, viscosity measurements, fluorescence quenching analysis, molecular docking and DNA nuclease. The intrinsic binding constants (Kb) of compounds with HS‐DNA has been obtained in range of 2.892–0.242 × 105 M?1. All the compounds bound with HS DNA by partial intercalative mode of binding. MIC study has been carried out against Gram(+ve) and Gram(?ve) bacterial species. In vitro cytotoxicity against brine shrimp lethality bioassay has been also carried out. The LC50 values of the ligands and complexes have been found in range of 56.49–120.22 μg/mL and 6.71–11.96 μg/mL, respectively.  相似文献   

13.
Fourteen novel [1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives bearing benzimidazole moiety ( 7a-n ) have been synthesized using the one-pot nitro reductive cyclization method. All the synthesized compounds were confirmed by 1H nuclear magnetic resonance (1H NMR), 13C NMR, fourier-transform infrared (FT-IR), mass spectrum, and elemental analyses. All the title compounds were subjected to in vitro antioxidant activity. The free radical scavenging activity of the compounds was examined using DPPH, nitric oxide, and superoxide radical scavenging methods. The results demonstrated that compound 3-(2-(3,4-dimethoxyphenyl)-1-propyl-1H-benzo[d]imidazol-5-yl)-6-4-tolyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine ( 7c ) was potent in scavenging both DPPH and nitric oxide radical with IC50 values of 13.57 and 18.55 μg/ml when compared to the standard with IC50 values of 23.75 and 23.14 μg/ml, respectively, which was due to the presence of electron-donating groups. The activity was found to decline when electron-donating groups were replaced by electron-withdrawing groups. Moderate scavenging activity was observed for the superoxide radical. Structure activity relationship and physiochemical properties were studied for all the derivatives.  相似文献   

14.
A series of new 2-(benzo[d]thiazol-2-yl) phenyl-4-nitrophenyl alkyl/aryl substituted phosphoramidate derivatives (7a-j) of biological interest are synthesized in two steps via an in situ process without the isolation of the intermediate. 2-(Benzo[d]thiazol-2-yl) phenol (3) was treated with 4-nitrophenyl phosphorodichloridate(4) to obtain the monochloro intermediate, 2-(benzo[d]thiazol-2-yl)phenyl (4-nitrophenyl) phosphorochloridate(5). It was subsequently reacted with various amines, 6(a-j) to afford the desired title products. IR, NMR (1H, 13C and 31P), mass spectral and elemental analysis are used to characterize the structures of the newly synthesized compounds. The antibacterial and antifungal activities are determined by the growth of inhibition of bacteria and fungi of the title compounds at two concentrations, 50 and 100 µg/mL, and minimum inhibitory concentrations to the active compounds. The compounds 7e, 7f and 7j exhibited promising inhibition activity against bacterial strains and 7c, 7e and 7i against A. niger and C. albicans and MIC values are in the range of 10.0–15.0 µg/mL.  相似文献   

15.
Abstract

A series of novel 1,2,3-benzotriazin-4-one derivatives containing 4,5-dihydrothiazole-2-thiol were synthesized and characterized by 1H NMR, 13C NMR, 19F NMR and HRMS. The bioassay results showed that compounds 3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)-7-methoxybenzo[d][1–3]triazin-4(3H)-one, 3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)-6-nitrobenzo[d][1–3]triazin-4(3H)-one, 7-chloro-3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)benzo[d][1–3]triazin-4(3H)-one exhibited good control efficacy against the cucumber root-knot nematode disease caused by Meloidogyne incognita at the concentration of 10.0?mg L?1 in vivo. Compound 7-chloro-3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)benzo[d][1–3]triazin-4(3H)-one showed excellent nematicidal activity with inhibition 68.3% at a concentration of 1.0?mg L?1. It suggested that the structure of 1,2,3-benzotriazin-4-one containing 4,5-dihydro-thiazole-2-thiol could be optimized further.  相似文献   

16.
Some novel N5-sulfonylated 4 were synthesized via sulfonylation of 5-amino-1H-pyrazole derivative 1 with arylsulfonyl chlorides. On the other hand, N1-alkylated pyrazoles 7 and 10 were synthesized through alkylation of compound 1 with each of chloroacetamides and ethylchloroacetate under different conditions. Condensation of compounds 4 and 7 with different aromatic aldehydes furnished the corresponding arylidene derivatives. In spite of, condensation of 10 with aromatic aldehydes afforded the 2-(5-amino-2-aryl-1H-pyrazol-1-yl)acetic acid. The structure of the newly synthesized compounds was elucidated by elemental analyses and spectral data. Also, the suggested mechanisms for their formation were studied. Additionally, some selected new compounds were screened against antimicrobial activity. Compound 7c exhibited a higher activity against Candida albicans (inhibition zone diameter [IZD] = 31.3 ± 0.6 mm) than the standard antibiotic Nystatin (IZD = 21 ± 0.5 mm). Also, compound 7c showed minimum inhibitory concentration = 125 and 250 μg/mL against Klebsiella pneumonia and Staphylococcus aureus, respectively. Molecular docking study also was carried out for compound 7c .  相似文献   

17.
A new series of 2,3-disubstituted quinoline derivatives were synthesized from 2-chloroquinoline-3-carbaldehyde. In the reaction sequence, acetanilide was cyclized to give 2-chloroquinoline-3-carbaldehyde 1 , which was transformed to 2-(4-phenylpiperazin-1-yl)quinolin-3-carbaldehyde 2 by reaction with 4-phenylpiperazine in DMF-containing anhydrous K2CO3; then, compound 2 was oxidized by iodine in methanol, and methyl 2-(4-phenylpiperazin-1-yl)quinoline-3-carboxylate 3 was synthesized. The key intermediate 4 , 4-amino-5-[2-(4-phenylpiperazin-1-yl)quinolin-3-yl]-4H-1,2,4-triazole-3-thiol, was prepared using the ester 3 by a series of step. Reaction of 5 with various aromatic carboxylic acids or phenacyl bromides yielded 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles 5a-c and 1,2,4-triazolo[3,4-b][1,3,4]thiadiazines 6a-c , respectively. Moreover, compound 2 condensed with o-phenylenediamine to give 2-[2-(4-phenylpiperazin-1-yl)quinolin-3-yl]-1H-benzimidazole 7 . Interaction of 7 and 2-chloromethyl-5-aryl-1,3,4-oxadiazoles in the presence of K2CO3 led to the title compounds 8a-c . Furthermore, 4,5-dihydroisoxazoline derivatives 9a-c were obtained by the reaction of readily accessible starting materials including 2-(4-phenylpiperazin-1-yl)quinolin-3-carbaldehyde 2 , 1-phenyl-2-(triphenylphosphoranylidene)ethanone and hydroximoyl chlorides under mild conditions in the presence of Et3N. The hydrazone intermediates 10a-c were obtained by the condensation of 2 with aroylhydrazides in ethanol, then, refluxing in acetic anhydride yielded 3-acetyl-5-aryl-2-[2-(4-phenylpiperazin-1-yl)quinolin-3-yl]-2,3-dihydro-1,3,4-oxadiazoles 11a-c . Structures of these compounds were established by their elemental analysis, IR, 1H NMR, and mass spectral data.  相似文献   

18.
Some new 1-aryl-4-[(aziridine-1-yl)diaryl-methyl]-5-methyl-1H-1,2,3-triazole derivatives 7j–s were synthesized by the one-pot reaction of diaryl-(1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)methanol compounds 6j–s formed from 1-aryl-5-methyl-1H-1,2,3-triazole-4-carboxylic acid derivatives. The new compounds 7j–s and 6j–s are investigated by 1H and 13C NMR, MS, and IR. The anticancer activity of the synthesis target compounds was evaluated against human leukemia (HL-60) cells and human hepatoma G2 cells. Some of the compounds were highly efficient. The 1H-NMR signals of the aziridine-ring cis-H/trans-H protons were found to be two group peaks at 1.800–1.884 and 1.183–1.327?ppm.  相似文献   

19.
A series of novel quinoline-proline hybrids ( 11a-g ) and quinoline-proline-1,2,3-triazole hybrids ( 12-14 ) were synthesized by click chemistry based on molecular hybridization concept and were characterized by NMR, mass spectrometry, and elemental analysis. All the titled target compounds were tested for antitubercular activity by MABA and LORA methods by in vitro. Interestingly, two compounds (2R,4S)-1-((2-cyclopropyl-4-(4-fluorophenyl)-quinolin-3-yl)-methyl)-4-(4-nitrobenzamido)-N-phenylpyrrolidine-2-carboxamide ( 11b ) and (2R,4S)-1-((2-cyclopropyl-4-(4-fluorophenyl)-quinolin-3-yl)-methyl)-4-(4-fluorobenzamido)-N-phenylpyrrolidine-2-carboxamide ( 11c ) exhibited significant activity against the tested Mycobacterium tuberculosis H37Rv strain. Further, the cytotoxicity ( CC 50 ) profile of the titled compounds against the Vero cell was performed and discussed. A molecular docking study of the hit compounds ( 11b and 11c ) was also performed to find their putative binding interaction with the active site of the target proteins. Finally, in silico ADMET properties were also predicted for all the synthesized molecules to evaluate their drug-likeness behavior.  相似文献   

20.
New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号