首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new iridium (III) complexes ( Ir1-Ir2 ) bearing different fluorinated 2-(biphenyl-4-yl)-2H-indazole-based compounds as cyclometalated ligands and Xantphos as an ancillary ligand were synthesized and fully characterized. The ultraviolet (UV)–vis absorption, photoluminescence, and electrochemistry properties were studied. The single crystal structures of Ir1-Ir2 were determined by X-ray diffraction, showing each adopts the distorted octahedral coordination geometry. To gain insights into the lowest energy electron transitions and the lowest triplet excited states, density functional theory calculations were used to further investigate the origination. Two complexes emit yellow photoluminescence with quantum yields of 49.7–72.5% in solution at room temperature. Their Commission Internationale de L'Eclairage color coordinates are (0.42, 0.53) and (0.39, 0.47), respectively.  相似文献   

2.
[M(SRaaiNR′)Cl3] (M = Rh(III), Ir(III) and SRaaiNR′ = 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazole) complexes are described in this article. The single crystal X-ray structure of one of the complexes, [Rh(SMeaaiNEt)Cl3] (3b), shows a tridentate chelation of SMeaaiNEt via N(imidazole), N(azo) and S(thioether) donor centres. Spectral characterization has been done by IR, UV–Vis and 1H NMR data. The electronic structure, redox properties and spectra are well supported by DFT and TDDFT computation on the complexes.  相似文献   

3.
New pyrimidine derivatives (pyr) have been synthesized using palladium-catalyzed Suzuki coupling reaction. These compounds can undergo cyclometalation with iridium trichloride to form bis-cyclometalated iridium complexes, (pyr)2Ir(acac) (acac = acetylacetonate; pyr = cyclometalated pyr). The substituents at the both cyclometalated phenyl ring and pyrimidine ring were found to affect both electrochemical and photophysical properties of the complexes. Computation results on these complexes are consistent with the electrochemical and photophysical data. The complexes are green-emitting with good solution quantum yields at ∼0.30. Light-emitting devices using these complexes as dopants were fabricated, and the device performance at 100 mA/cm2 are moderate: 9 (17 481 cd/m2, 4.8%, 18 cd/A, 5.1 lm/W); 10 (18 704 cd/m2, 4.9%, 18.9 cd/A, 4.7 lm/W); 13 (20 942 cd/m2, 5.4%, 21.0 cd/A, 6.1 lm/W).  相似文献   

4.
Complexes of Co(III) with 2-hydroxyacetophenone-thiosemicarbazone, 2-hydroxy-3-methylacetophenonethiosemicarbazone and 2-hydroxy-4-methyl-acetophenonethiosemicarbazone, and the addition complexes of 2-hydroxy-acetophenone thiosemicarbazone with ammonia, pyridine, aniline,o-toluidine,m-toluidine andp-toluidine have been synthesized and characterized on the basis of their conductivities, electronic and infrared spectral data. All complexes are low-spin octahedral in nature. Various parameters have been obtained using ligand field theory.  相似文献   

5.
Two new complexes, [Ni(en)2(mtt)2] (1) and [Co(en)2(mtt)2](mtt) (2) (Hmtt = 5-methyl-1,3,4-thiadiazole-2-thiol and en = ethylenediamine), have been synthesized and characterized by various physicochemical techniques. Complexes 1 and 2 crystallize in monoclinic and orthorhombic system with space groups P 21/n and P 21 21 21, respectively. The molecular structures of 1 and 2 show that the metal ions are six-coordinate bonded through four equatorial nitrogens of two en and two axial nitrogens of mtt ligands. The crystal structures of the complexes reveal that mtt is present in thione form and bound to the metal ion through the thiadiazole nitrogen. The crystal structures of the complexes are stabilized by various intermolecular hydrogen bonding providing supramolecular architecture. Complex 2 is also stabilized by weak π···π interactions occurring between two thiadiazole rings. The bioefficacies of the ligand and complexes have been examined against the growth of bacteria to evaluate their antimicrobial potential. The biological results suggest that 2 is more active than the ligand and 1 against the tested bacteria. The geometries of the ligand and the complexes have been optimized by the DFT method and the results are compared with the X-ray diffraction data. The Co(III) complex exhibits an irreversible Co(III)/Co(II) process while the Ni(II) complex displays quasi-reversible Ni(II)/Ni(III) redox processes with large peak separation as compared to that expected for a one electron process which is thought to be coupled with some chemical reaction.  相似文献   

6.
7.
A new Schiff base, 3-(benzothiazol-2-yliminomethyl)-naphthalen-2-ol, has been synthesized and characterized by elemental analysis, Fourier transform infrared spectroscopy (FT-IR), UV–vis, nuclear magnetic resonance, and single-crystal X-ray diffraction. Ruthenium(III) complexes of the Schiff base were synthesized and characterized by analytical and spectroscopic (FT-IR, UV–vis, and electron paramagnetic resonance) data as well as magnetic susceptibility measurements. DNA-binding properties of the ligand and its ruthenium(III) complexes have been investigated by electronic absorption spectroscopy. The three ruthenium(III) complexes were tested for DNA cleavage. Further in vitro study of the cytotoxity of the ligand and the complexes on human cervical cancer cell line and human laryngeal epithelial carcinoma cell line were carried out.  相似文献   

8.
A series of chromium(III) complexes [Cr(bipy)(HC2O4)2]Cl·3H2O (1), [Cr(phen)(HC2O4)2]Cl·3H2O (2), [Cr(phen)2(C2O4)]ClO4 (3), [Cr2(bipy)4(C2O4)](SO4)·(bipy)0.5·H2O (4) and [Mn(phen)2(H2O)2]2[Cr(phen)(C2O4)2]3ClO4·14H2O (5) were synthesized (bipy=4,4′-bipyridine, phen=1,10-phenanthroline), while the crystal structures of 1 and 3–5 have been determined by X-ray analysis. 1 and 3 are mononuclear complexes, 4 contains binuclear chromium(III) ions and 5 is a 3D supromolecule formed by complicated hydrogen bonding. 1–3 are potential molecular bricks of chromium(III) building blocks for synthesis heterometallic complexes. When we use these molecular bricks as ligands to react with other metal salts, unexpected complexes 4 and 5 are isolated in water solution. The synthesis conditions and reaction results are also discussed.  相似文献   

9.
The reactions of [ReX3(MeCN)(PPh3)2] (X = Cl or Br) with 1-(2-pyridylazo)-2-naphthol (HPAN) have been examined and the [ReBr(PAN)2] · 2CHCl3 (1) and [ReCl(PAN)2] (2) complexes have been obtained. The both complexes have been structurally and spectroscopically characterized, and compound 1 has been additionally studied by magnetic measurements. The magnetic behavior is characteristic of mononuclear seven-coordinated Re(III) complex with d4 low-spin configuration, which gives diamagnetic ground state.  相似文献   

10.
The reactions of Vaska’s complex [IrCl(CO)(PPh3)2] with 2-(coumaryl-6-azo)imidazole (CZ-H) and its derivatives (CZ-X) have synthesized [Ir(CZ)(CO)(PPh3)2] and [Ir(CZ-X)(CO)(PPh3)2]. All the complexes have been characterized by FT-IR, UV-Vis, 1H NMR and FAB-MS spectroscopy. The structural confirmation has been done in one case, by a single crystal X-ray diffraction study, which shows a distorted square pyramidal geometry around the central Ir atom. The complexes are emissive at room temperature. The cyclic voltammetry of the complexes shows a metal centered irreversible oxidation and ligand centered quasireversible reduction couples. To get an insight into the electronic structure, absorption spectra and electrochemical properties, detailed calculations on all three complexes have been performed at the DFT level.  相似文献   

11.
The reactions of Ga(acac)3 with salicylaldoxime (saoH2) and methyl-salicylaldoxime (Me-saoH2) in dichloromethane/hexane afforded the complexes [Ga(acac)(saoH)2] (1) and [Ga(acac)3][Ga(acac)(MesaoH)2] (2), respectively, in high yields. The crystal structures of 1 and 2 have been determined by single-crystal X-ray crystallography. Both complexes are mononuclear with the Ga(III) atoms being in octahedral environments surrounded by two bidentate chelate R-saoH and one bidentate chelate acac ligands. A [Ga(acac)3] moiety has co-crystallized along with the methylsalicylaldoximato complex. Characteristic IR as well as NMR data are discussed in terms of the nature of bonding in the structures of the two complexes. 1H and 13C NMR data in CDCl3 indicate that the salicylaldoximato complexes isomerize in solution.  相似文献   

12.
Solid complexes of five derivatives of thio-Schiff bases with La(III) and Ce(III) ions were prepared and characterized by elemental and thermogravimetric analyses. The suggested general formula of the solid complexes is [ML2(H2O)X]·2H2O, whereM=trivalent lanthanide ion,L=Schiff base andX=Cl? or ClO 4 ? . Information about the water of hydration, the coordinated water molecules, the coordination chemistry and the thermal stability of these complexes was obtained and is discussed. Additionally, a general scheme of thermal decomposition of the lanthanide-Schiff base complexes is proposed.  相似文献   

13.
The [ReCl3(MeCN)(PPh3)] complex reacts with 1-isoquinolinyl phenyl ketone (N–O) to give [ReCl3(N–O)(PPh3)]. The compound has been studied by IR, UV–Vis spectroscopy, magnetic measurements and X-ray crystallography. The magnetic behavior is characteristic of mononuclear octahedral Re(III) complex with d4 low-spin (3T1g ground state) and arises because of the large spin–orbit coupling, which gives diamagnetic ground state. The molecular orbital diagram of [ReCl3(N–O)(PPh3)] has been calculated with the density functional theory (DFT) method, and time-dependent DFT (TD-DFT) calculations have been employed in order to discussion of its spectroscopic properties in more detail.  相似文献   

14.
Quantum chemistry methods are applied to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of Iridium (III) complexes [Ir(C∧N)2(L)2]+ (L = 4‐pyCO2Et; C∧N = 2‐phenylpyridine, 1 ; 2‐(4‐tolyl)pyridine, 2 ; 2‐(4,6‐difluorophenyl)pyridimato, 3 ; benzoquinoline, 4 ), which may be used as emitters on organic light emitting diodes (OLEDs). Calculations of ionization potentials and electron affinities are used to evaluate the injection abilities of holes and electrons into these complexes. The reorganization energy (λ) calculations show that the four complexes are suitable as emitters in OLEDs. The absorptions and emissions can be tuned by adding substituent to the ppy ligand or extending the π‐conjugation effect of the C∧N ligand, and quantum yields of 1 – 4 are investigated. In addition, no solvent effect is observed in the absorption and emission spectra. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The electronic structures and photophysical properties of five iridium(III) complexes Ir(tfmppy)2(tpip) (1), Ir(dfppy)2(tpip) (2), Ir(afCNppy)2(tpip) (3), Ir(CNpyN3)2(tpip) (4), and Ir(2fphpta)2(tpip) (5) [where tfmppy = 4‐trifluoromethylphenylpyridine; dfppy =4,6‐difluorophenylpyridine; afCNppy = 6‐fluoro‐4‐octyloxy‐5‐cyano‐phenylpyridine; CNpyN3 = 2‐(4‐cyano‐phenyl)‐[1,2,3]‐triazole; 2fphpta=2‐(2,6‐difluoro‐phenyl‐[1,2,4]‐triazol‐3‐yl)‐pyridine; tpip=tetraphenylimido‐diphosphinate] have been investigated by using density functional theory (DFT) methods and time‐dependent DFT ones, aiming at elucidating the influences of different substituents and cyclometalated ligands on the emission properties and quantum yield. The calculated results revealed that the different substituents in 1 ‐ 3 have a great influence on the energy levels, in particular highest occupied molecular orbital. Meanwhile, we have also get a further insight into the reason for different phosphorescence quantum yields of the studied complexes. The higher quantum yield (Φ) reported for 1 was found to be closely related to both its smaller S1–T1 splitting energy ( ) and larger transition electric dipole moment ( ) upon the S0 → S1 transition. Complex 5 is expected to be a potential candidate for blue‐emitting material with good organic light‐emitting diodes performances. We propose that the optical properties of this class of materials can be tuned by the modifications of the cyclometalated ligands. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
A convenient method is presented for the first time for the direct separation of enantiomers of a tris(2-phenylpyridine) iridium (III) and an analog substituted with long alkoxy chains on polysaccharide derivative-based chiral stationary phases by HPLC. Tris(2-phenylpyridine) iridium (III) was separated on the immobilized amylose 3,5-dimethylphenylcarbamate (Chiralpak IA) using hexane/CHCl3/CH2Cl2 (75:20:5) as an eluent, and the analog could be separated on the coated cellulose 3,5-dimethyl-phenylcarbamate (Chiralcel OD) and cellulose 4-methylbenzoate (Chiralcel OJ) using hexane/2-propanol (96:4) as the eluent. CD spectra of the eluted HPLC fractions were also recorded, and the observed mirror image patterns confirm their enantioseparations.  相似文献   

17.
Single crystals of the aluminium and gallium complexes of 6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenol), namely diaqua(6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenolato)‐κ4O1,N,N′,O1′)aluminium(III) nitrate ethanol monosolvate, [Al(C22H18N2O4)(H2O)2]NO3·C2H5OH, 1 , and diaqua(6,6′‐{(1E,1′E)‐[1,2‐phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2‐methoxyphenolato)‐κ4O1,N,N′,O1′)gallium(III) nitrate ethanol monosolvate, [Ga(C22H18N2O4)(H2O)2]NO3·C2H5OH, 2 , were obtained after successful synthesis in ethanol. Both complexes crystallized in the triclinic space group P, with two molecules in the asymmetric unit. In both structures, in one of the independent molecules the tetradentate ligand is almost planar while in the other independent molecule the ligand shows significant distortions from planarity, as illustrated by the largest distance from the plane constructed through the central metal atom and the O,N,N′,O′‐coordinating atoms of the ligand in 1 of 1.155 (3) Å and a distance of 1.1707 (3) Å in 2 . The possible reason for this is that there are various strong π‐interactions in the structures. This was confirmed by density functional theory (DFT) calculations, as were the other crystallographic data. DFT was also used to predict the outcome of cyclic voltammetry experiments. Ligand oxidation is more stabilized in the gallium complex. Solid‐state photoluminescence gave an 80 nm red‐shifted spectrum for the gallium complex, whereas the aluminium complex maintains the ligand curve with a smaller red shift of 40 nm.  相似文献   

18.
The mononuclear high-spin iron(III) complexes [Fe(3-MeOsalpn)Cl(H2O)] (1) and [Fe(3-MeOsalpn)(NCS)(H2O)]·0.5CH3CN (2) and the tetranuclear oxo-bridged compound [{Fe(3-MeOsalpn)Gd(NO3)3}2(μ-O)]·CH3CN (3) [3-MeOsalpn2− = N,N′-propylenebis(3-methoxysalicylideneiminate)] have been prepared and magneto-structurally characterised. The iron(III) ion in 1 and 2 is six-coordinated in a somewhat distorted octahedral surrounding with the two phenolate-oxygens and two imine-nitrogens from the Schiff-base building the equatorial plane and a water (1 and 2) and a chloro (1)/thiocyanate-nitrogen (2) in the axial positions. The neutral mononuclear units of 1 and 2 are assembled into centrosymmetric dinuclear motifs through hydrogen bonds between the axially coordinated water molecule of one iron centre and methoxy-oxygen atoms from the Schiff-base of the adjacent iron atom. The values of the intradimer metal-metal distance within the supramolecular dimers are 4.930 (1) and 4.878 Å (2). The tetranuclear of 3 can be described as two {FeIII(3-MeOsalpn)} units connected through an oxo-bridge, each one hosting a [GdIII(NO3)3] entity in the outer cavity defined by the two phenolate- and two methoxy-oxygen atoms. The values of the intramolecular Fe?Fe and Fe?Gd distances in 3 are 3.502 and 3.606 Å, respectively. The analysis of the magnetic data of 1-3 in the temperature range 1.9-300 K shows the occurrence of weak intermolecular antiferromagnetic interactions in 1 and 2 [J = −0.76 (1) and −0.75 cm−1 (2) with the Hamiltonian defined as H = −JSFe1·SFe1] whereas two intramolecular antiferromagnetic interactions coexist in 3, one very strong between the two iron(III) ions (J1) through the oxo bridge and the other much weaker between the iron(III) and the Gd(III) ions (J2) across the double phenoxo oxygens [J1 = −275 cm−1 and J2 = −3.25 cm−1, the Hamiltonian being defined as H=-J1SFe1·SFe1-J2(SFe1·SGd1+SFe1·SGd1)]. These values are analysed in the light of the structural data and compared with those of related systems.  相似文献   

19.
Reactions of malonic acid (H2mal) with PrCl3·6H2O afforded the known complex [Pr2(mal)3(H2O)6]n (1), and compounds [Pr2(mal)3(H2O)6]n·2nH2O (2·2nH2O), [PrCl(mal)(H2O)3]n·0.5nH2O (3·0.5nH2O) and [Pr(mal)(Hmal)(H2O)3]n·nH2O (4·nH2O) using various reaction ratios, reaction media (H2O, MeOH) and pH values. Analogous reactions with CeCl3·7H2O afforded compounds [Ce2(mal)3(H2O)6]n (5), [CeCl(mal)(H2O)3]n·nH2O (6·nH2O) and [Ce(mal)(Hmal)(H2O)3]n·nH2O (7·nH2O). Compounds 2·2nH2O and 3·0.5nH2O were characterized by X-ray crystallography, and 47 by microanalytical and spectroscopic data. The malonate(-2) ligand adopts three different coordination modes in the structures of 13, i.e., the μ2OO′:κO″ and the μ42OO′:κ2O″:κO? in 1 and 2 leading to a 3D network structure, and the μ32OO′:κ2O″:κO? in 3 promoting an 1D structure. The thermal decomposition of 1 and 3·0.5nH2O was monitored by TG/DTA and TG/DTG measurements. The structural features of 13 are discussed in terms of known malonato(-2) LnIII and CaII complexes. The bioinorganic chemistry relevance of our results is discussed.  相似文献   

20.
Novel p-tolylimido rhenium(V) complexes [Re(p-NC6H4CH3)X2(hpb)(PPh3)] and [Re(p-NC6H4CH3)(hpb)2(PPh3)]X (X = Cl, Br) have been obtained in the reactions of [Re(p-NC6H4CH3)X3(PPh3)2] with 2-(2-hydroxyphenyl)-1H-benzimidazole (Hhpb). The compounds were identified by elemental analysis IR, UV-Vis spectroscopy and X-ray crystallography. The electronic structures of the complex [Re(p-NC6H4CH3)Cl2(hpb)(PPh3)] and the cation [Re(p-NC6H4CH3)(hpb)2(PPh3)]+ have been calculated with the density functional theory (DFT) method. Additional information about binding in the [Re(p-NC6H4CH3)Cl2(hpb)(PPh3)] and [Re(p-NC6H4CH3)(hpb)2(PPh3)]+ has been obtained by NBO analysis. The electronic spectra of [Re(p-NC6H4CH3)Cl2(hpb)(PPh3)] and [Re(p-NC6H4CH3)(hpb)2(PPh3)]Cl were investigated at the TDDFT level employing B3LYP functional in combination with LANL2DZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号