首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
3.
4.
5.
The heats of formation and strain energies for saturated and unsaturated three- and four-membered nitrogen and phosphorus rings have been calculated using G2 theory. G2 heats of formation (ΔHf298) of triaziridine [(NH)3], triazirine (N3H), tetrazetidine [(NH)4], and tetrazetine (N4H2) are 405.0, 453.7, 522.5, and 514.1 kJ mol−1, respectively. Tetrazetidine is unstable (121.5 kJ mol−1 at 298 K) with respect to its dissociation into two trans-diazene (N2H2) molecules. The dissociation of tetrazetine into molecular nitrogen and trans-diazene is highly exothermic (ΔH298 = −308.3 kJ mol−1 calculated using G2 theory). G2 heats of formation (ΔHf298) of cyclotriphosphane [(PH)3], cyclotriphosphene (P3H), cyclotetraphosphane [(PH)4], and cyclotetraphosphene (P4H2) are 80.7, 167.2, 102.7, and 170.7 kJ mol−1, respectively. Cyclotetraphosphane and cyclotetraphosphene are stabilized by 145.8 and 101.2 kJ mol−1 relative to their dissociations into two diphosphene molecules or into diphosphene (HP(DOUBLE BOND)PH) and diphosphorus (P2), respectively. The strain energies of triaziridine [(NH)3], triazirine (N3H), tetrazetidine [(NH)4], and tetrazetine (N4H2) were calculated to be 115.0, 198.3, 135.8, and 162.0 kJ mol−1, respectively (at 298 K). While the strain energies of the nitrogen three-membered rings in triaziridine and triazirine are smaller than the strain energies of cyclopropane (117.4 kJ mol−1) and cyclopropene (232.2 kJ mol−1), the strain energies of the nitrogen four-membered rings in tetrazetidine and tetrazetine are larger than those of cyclobutane (110.2 kJ mol−1) and cyclobutene (132.0 kJ mol−1). In contrast to higher strain in cyclopropane as compared with cyclobutane, triaziridine is less strained than tetrazetidine. The strain energies of cyclotriphosphane [(PH)3, 21.8 kJ mol−1], cyclotriphosphene (P3H, 34.6 kJ mol−1), cyclotetraphosphane [(PH)4, 24.1 kJ mol−1], and cyclotetraphosphene (P4H2, 18.5 kJ mol−1), calculated at the G2 level are considerably smaller than those of their carbon and nitrogen analog. Cyclotetraphosphene containing the P(DOUBLE BOND)P double bond is less strained than cyclotetraphosphane, in sharp contrast to the ratio between the strain energies for the analogous unsaturated and saturated carbon and nitrogen rings. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62 : 373–384, 1997  相似文献   

6.
The photoconversion of 2′,3′‐dihydro‐6‐nitro‐1′,3′,3′‐trimethylspiro[2H‐1‐benzopyran‐2,2′‐indole] ( Sp ) to its open merocyanine form ( Mc ) in a series of aerated cycloalkanes (cyclopentane, cyclohexane, and trans‐ and cis‐decalin) and of the protonated merocyanine ( McH + ) to Sp in aqueous solution were studied by laser‐induced optoacoustic spectroscopy (LIOAS). The +(11±2) ml mol−1 expansion determined for the ring closure is due to deprotonation of McH + plus the reaction of the ejected proton with the monoanion of malonic acid (added to stabilize Mc ), an intrinsic expansion and a small electrostriction term. The energy difference between Sp and initial McH + is (282±110) kJ mol−1. An intrinsic contraction of −(47±15) ml mol−1 occurs upon ring opening, forming triplet 3Mc in the cycloalkanes, whereas no volume change was detected for the 3Mc to Mc relaxation. Electrostriction decreases the 3Mc energy, (165±18) kJ mol−1, to 135 kJ mol−1. The difference in the values of the ring‐opening ( Sp to Mc ) reaction enthalpy in cycloalkanes as derived from the temperature dependence of the Sp ⇌ Mc equilibrium, (29±8) kJ mol−1, and from the LIOAS data, −(9±25) kJ mol−1, is due to the formation of Mc‐Sp aggregates during steady‐state measurements. The Sp ‐sensitized singlet molecular oxygen, O2(1Δg), quantum yield (average ΦΔ=0.58±0.03) derived from the near‐IR emission of O2(1Δg), was taken as a measure of Mc production in the cycloalkanes. These solvents, albeit troublesome in their handling, provide an additional series for the determination of structural volume changes in nonaqueous media, besides the alkanes already used.  相似文献   

7.
The calculated difference in the standard heat of formation Δ ΔfH°(298.15) of n- and i-C4H3 free radicals is 37.9 kJ mol−1 for G3MP2B3 and 45.0 kJ mol−1 for CCSD(T)-CBS (W1U) calculations, which seems to preclude the direct even-carbon radical pathway to benzene and higher PAH (polycyclic aromatic hydrocarbon) formation including soot in a hydrocarbon flame. For the phenyl-type σ-radicals listed in the title, absolute values of ΔfH°(298.15) have been calculated using G3MP2B3-computed values of bond dissociation energies D°(298.15) and combined with experimental values of ΔfH° (298.15) for the parent hydrocarbon because of a slight systematic overprediction of the thermodynamic stability of large PAHs by the applied computational G3MP2B3 method. Standard enthalpies of formation ΔfH°(298.15) as well as absolute entropies S° and heat capacities C°p are given for a series of π- and σ-free radicals important to combustion as a function of temperature. A spread of roughly 40 kJ mol−1 in the average C H bond strength of PAH leading to σ-radicals has been calculated, the lowest leading to 4-phenanthryl (463.6 kJ mol−1), the highest leading to 2-biphenylyl radical (502.5 kJ mol−1). © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 395–415, 2008  相似文献   

8.
We have measured the enthalpy of reaction of AmO2, using 241Am and 243Am, in 0.5 M H2SO4−0.1 M KI solution. From this datum and auxiliary thermochemical measurements we have calculated ΔHf°(AmO2, C, 298.15 K) = −932.2 ± 2.7 kJ mol−1. We estimate ΔHf°(Am4+, aq, 298.15 K) = −406±6 kJ mol−1 and E°(Am4+/Am3+) = 262 ± 0.09 V.  相似文献   

9.
The gas-phase reactions of O . (H2O)n and OH(H2O)n, n=20–38, with nitrogen-containing atmospherically relevant molecules, namely NOx and HNO3, are studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and theoretically with the use of DFT calculations. Hydrated O . anions oxidize NO . and NO2 . to NO2 and NO3 through a strongly exothermic reaction with enthalpy of −263±47 kJ mol−1 and −286±42 kJ mol−1, indicating a covalent bond formation. Comparison of the rate coefficients with collision models shows that the reactions are kinetically slow with 3.3 and 6.5 % collision efficiency. Reactions between hydrated OH anions and nitric oxides were not observed in the present experiment and are most likely thermodynamically hindered. In contrast, both hydrated anions are reactive toward HNO3 through proton transfer from nitric acid, yielding hydrated NO3. Although HNO3 is efficiently picked-up by the water clusters, forming (HNO3)0–2(H2O)mNO3 clusters, the overall kinetics of nitrate formation are slow and correspond to an efficiency below 10 %. Combination of the measured reaction thermochemistry with literature values in thermochemical cycles yields ΔHf(O(aq.))=48±42 kJ mol−1 and ΔHf(NO2(aq.))=−125±63 kJ mol−1.  相似文献   

10.
The kinetic of D,L-lactide polymerization in presence of biocompatible zirconium acetylacetonate initiator was studied by differential scanning calorimetry in isothermal mode at various temperatures and initiator concentrations. The enthalpy of D,L-lactide polymerization measured directly in DSC cell was found to be ΔH=−17.8±1.4 kJ mol−1. Kinetic curves of D,L-lactide polymerization and propagation rate constants were determined for polymerization with zirconium acetylacetonate at concentrations of 250–1000 ppm and temperature of 160–220 °C. Using model or reversible polymerization the following kinetic and thermodynamic parameters were calculated: activation energy Ea=44.51±5.35 kJ mol−1, preexponential constant lnA=15.47±1.38, entropy of polymerization ΔS=−25.14 J mol−1 K−1. The effect of reaction conditions on the molecular weight of poly(D,L-lactide) was shown.  相似文献   

11.
The standard enthalpy of combustion of cyclohexylamine has been measured in an aneroid rotating-bomb calorimeter. The value ΔHoo(c-C6H11NH2, 1) = ?(4071.3 ± 1.3) kJ mol?1 yields the standard enthalpy of formation ΔHfo(c-C6H11NH2, 1) = ?(147.7 ± 1.3) kJ mol?1. The corresponding gas-phase standard enthalpy of formation for cyclohexylamine is ΔHfo(c-C6H11NH2, g) = ?(104.9 ± 1.3) kJ mol?1. The standard enthalpy of formation of cyclohexylamine hydrochloride, ΔHfo(c-C6H11NH2·HCl, c) = ?(408.2 ± 1.5) kJ mol?1, was derived by combining the measured enthalpy of solution of the salt in water, literature data, and the ΔHco measured in this study. Comment is made on the thermochemical bond enthalpy H(CN).  相似文献   

12.
We have applied new methods for performing coupled-cluster calculations to small molecules containing iodine atoms; specifically, NI3 and N2I4. Because NI3 is known to be very reactive, attempts to measure its thermodynamic properties have been challenging at best. To date, N2I4 has not been isolated, and our results suggest that its isolation will be just as challenging. We find that the ΔHf(NI3)=+307.7 kJ mol−1 and ΔHf(N2I4)=+551.6 kJ mol−1, confirming that they are unstable with respect to their decomposition products N2 and I2.  相似文献   

13.
The dynamics of hydrogen bonding do not only play an important role in many biochemical processes but also in Nature's multicomponent machines. Here, a three-component nanorotor is presented where both the self-assembly and rotational dynamics are guided by hydrogen bonding. In the rate-limiting step of the rotational exchange, two phenolic O-H–N,N(phenanthroline) hydrogen bonds are cleaved, a process that was followed by variable-temperature 1H NMR spectroscopy. Activation data (ΔG298=46.7 kJ mol−1 at 298 K, ΔH=55.3 kJ mol−1, and ΔS=28.8 J mol−1 K−1) were determined, furnishing a rotational exchange frequency of k298=40.0 kHz. Fully reversible disassembly/assembly of the nanorotor was achieved by addition of 5.0 equivalents of trifluoroacetic acid (TFA)/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) over three cycles.  相似文献   

14.
《Polyhedron》1988,7(6):421-424
The standard enthalpies of formation, at 298 K, of the 1-phenyl-1,3-butanedione (HBZAC) and 1,1,1-trifluoro-2,4-pentanedione (HTFAC) crystalline complexes of cobalt(II) were determined by precise solution—reaction calorimetry: ΔH0f{Co(BZAC)2,cr} = −632±6.0 kJ mol−1 ΔH0f{Co(TFAC)2,cr} = −2140±10 kJ mol−1. The average molar bond-dissociation enthalpies, <D>(CoO) were derived.  相似文献   

15.
2‐Phenylethanol, racemic 1‐phenyl‐2‐propanol, and 2‐methyl‐1‐phenyl‐2‐propanol have been pyrolyzed in a static system over the temperature range 449.3–490.6°C and pressure range 65–198 torr. The decomposition reactions of these alcohols in seasoned vessels are homogeneous, unimolecular, and follow a first‐order rate law. The Arrhenius equations for the overall decomposition and partial rates of products formation were found as follows: for 2‐phenylethanol, overall rate log k1(s−1)=12.43−228.1 kJ mol−1 (2.303 RT)−1, toluene formation log k1(s−1)=12.97−249.2 kJ mol−1 (2.303 RT)−1, styrene formation log k1(s−1)=12.40−229.2 kJ mol−1(2.303 RT)−1, ethylbenzene formation log k1(s−1)=12.96−253.2 kJ mol−1(2.303 RT)−1; for 1‐phenyl‐2‐propanol, overall rate log k1(s−1)=13.03−233.5 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=13.04−240.1 kJ mol−1(2.303 RT)−1, unsaturated hydrocarbons+indene formation log k1(s−1)=12.19−224.3 kJ mol−1(2.303 RT)−1; for 2‐methyl‐1‐phenyl‐2‐propanol, overall rate log k1(s−1)=12.68−222.1 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=12.65−222.9 kJ mol−1(2.303 RT)−1, phenylpropenes formation log k1(s−1)=12.27−226.2 kJ mol−1(2.303 RT)−1. The overall decomposition rates of the 2‐hydroxyalkylbenzenes show a small but significant increase from primary to tertiary alcohol reactant. Two competitive eliminations are shown by each of the substrates: the dehydration process tends to decrease in relative importance from the primary to the tertiary alcohol substrate, while toluene formation increases. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 401–407, 1999  相似文献   

16.
17.
The position of the equilibrium between localized and delocalized states of thermochromic semibullvalenes and barbaralanes (see the Equation) depends strongly on the solvent. Dipolar aprotic solvents, particularly N,N′-dimethylpropylene urea, favor the delocalized, bishomoaromatic state (ΔH0=8 kJ mol−1 (cyclohexane), ΔH0<0 kJ mol−1 (N,N′-dimethylpropylene urea)).  相似文献   

18.
19.
20.
《Thermochimica Acta》1987,122(2):289-294
The standard enthalpy of formation of potassium metasilicate (K2SiO3), determined by hydrofluoric acid solution calorimetry, was found to be ΔHof,298 = −363.866±0.421 kcal mol−1 (−1522.415±1.762 kj mol−1). The standard enthalpy of formation from the oxides was found to beΔHo298 = −64.786±0.559 kcal mol−1 (−271.065±2.339 kJ mol−1).These experimentally determined data were combined with data from the literature to calculate the Gibbs energies of formation and equilibrium constants of formation over the temperature range of the literature data. The standard enthalpies of formation and Gibbs energies of formation are given as functions of temperature. The standard Gibbs energy of formation is ΔGf,298.150 = −341.705 kcal mol−1 (−1429.694 kJ mol−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号