首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
This article provides a strategy for solving incompressible turbulent flows, which combines compact finite difference schemes and parallel computing. The numerical features of this solver are the semi-implicit time advancement, the staggered arrangement of the variables and the fourth-order compact scheme discretisation. This is the usual way for solving accurately turbulent incompressible flows. We propose a new strategy for solving the Helmholtz/Poisson equations based on a parallel 2d-pencil decomposition of the diagonalisation method. The compact scheme derivatives are computed with the parallel diagonal dominant (PDD) algorithm, which achieves good parallel performances by introducing a bounded numerical error. We provide a new analysis of its effect on the numerical accuracy and conservation features. Several numerical experiments, including two simulations of turbulent flows, demonstrate that the PDD algorithm maintains the accuracy and conservation features, while conserving a good parallel performance, up to 4096 cores.  相似文献   

2.
An improved preconditioning scheme incorporating a unified treatment of general fluid thermodynamics is developed for treating fluid flows over the entire regime of fluid thermodynamic states at all speeds. All of the thermodynamic and numerical properties (such as eigenvalues and Jacobian matrices) are derived directly from fundamental thermodynamics theories, rendering a self-consistent and robust algorithm. Further efficiency is obtained by employing temperature instead of enthalpy as the primary dependent variable in the preconditioned energy equation. No iterative solution of a real-fluid equation of state is required. This approach, combined with the use of explicit treatments of temporal and spatial derivatives, results in a scheme for which load balance is much easier to achieve in a distributed computing environment. A numerical stability analysis is performed to assess the effectiveness of the scheme at various fluid thermodynamic states. Sample calculations are also carried out. These include injection and mixing of cryogenic fluids and flame dynamics of coaxial jets of liquid oxygen and methane under supercritical conditions. The robustness and efficiency of the present work are demonstrated over a wide range of thermodynamic and flow conditions.  相似文献   

3.
In this study, a parallel implementation of gas-kinetic Bhatnagar–Gross–Krook method on two-dimensional hybrid grids is presented. Boundary layer regions in wall bounded viscous flows are discretised with quadrilateral grid cells stretched in the direction normal to the solid surface while the rest of the flow domain is discretised by triangular cells. The parallel solution algorithm on hybrid grids is based on the domain decomposition using METIS, a graph partitioning software. The flow solutions obtained in parallel significantly improve the computation time, a significant deficiency of gas-kinetic methods. Several validation test cases presented show the accuracy and robustness of the method developed.  相似文献   

4.
We present an atomistic–continuum hybrid method to investigate spreading dynamics of drops on solid surfaces. The Navier–Stokes equations are solved by the finite-volume method in a continuum domain comprised of the main body of the drop, and atomistic molecular dynamics simulations are used in a particle domain in the vicinity of the contact line. The spatial coupling between the continuum and particle domains is achieved through constrained dynamics of flux continuities in an overlap domain.  相似文献   

5.
6.
In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号