首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of carbon isotope fractionation is needed in order to discuss the formation and dissociation of naturally occurring CO2 hydrates. We investigated carbon isotope fractionation during CO2 hydrate formation and measured the three-phase equilibria of 12CO2–H2O and 13CO2–H2O systems. From a crystal structure viewpoint, the difference in the Raman spectra of hydrate-bound 12CO2 and 13CO2 was revealed, although their unit cell size was similar. The δ13C of hydrate-bound CO2 was lower than that of the residual CO2 (1.0–1.5‰) in a formation temperature ranging between 226 K and 278 K. The results show that the small difference between equilibrium pressures of ~0.01 MPa in 12CO2 and 13CO2 hydrates causes carbon isotope fractionation of ~1‰. However, the difference between equilibrium pressures in the 12CO2–H2O and 13CO2–H2O systems was smaller than the standard uncertainties of measurement; more accurate pressure measurement is required for quantitative discussion.  相似文献   

2.
The dynamics of carbon dioxide in third generation (i. e., flexible) Metal-Organic Frameworks (MOFs) can be experimentally observed by 13C NMR spectroscopy. The obtained line shapes directly correlate with the motion of the adsorbed CO2, which in turn are readily available from classical molecular dynamics (MD) simulations. In this article, we present our publicly available implementation of an algorithm to calculate NMR line shapes from MD trajectories in a matter of minutes on any current personal computer. We apply the methodology to study an effect observed experimentally when adsorbing CO2 in different samples of the pillared layer MOF Ni2(ndc)2(dabco) (ndc=2,6-naphthalene-dicarboxylate, dabco=1,4-diazabicyclo-[2.2.2]-octane), also known as DUT-8(Ni). In 13C NMR experiments of adsorbed CO2 in this MOF, small (rigid) crystals result in narrower NMR line shapes than larger (flexible) crystals. The reasons for the higher mobility of CO2 inside the smaller crystals is unknown. Our ligand field molecular mechanics simulations provide atomistic insight into the effects visible in NMR experiments with limited computational effort.  相似文献   

3.
The kinetic isotope effect (KIE) for carbon and oxygen in the reaction CO + OH has been measured over a range of pressures of air and at 0.2 and 1.0 atm of oxygen, argon, and helium. The reaction was carried out with 21–86% conversion under static conditions, utilizing the photolysis of H2O2 as a source of OH radicals. The value of the KIE for carbon varies with pressure and the kind of ambient gas; for air the ratio of the reaction rates 12k/13k has the value 1.007 at 1.00 atm and decreases to 0.997 at 0.2 atm; for oxygen and argon over the same pressure range the values are 1.002–0.994 and 1.000–0.991, respectively. The value of the KIE for the CO oxygen atom is 16k/18k = 0.990 over the pressure range 0.2–1.0 atm and is independent of the kind of ambient gas. No exchange of the oxygen atoms in the activated complex, followed by decomposition to the starting molecules, was observed. From the mechanistic standpoint the normal KIE observed for carbon at the high pressure is attributed to the initial formation of the activated HOCO radical, whereas the inverse KIE observed at low pressures is a result of the KIE for the reverse reaction HOCO? → CO + OH being greater than that for the forward reaction HOCO? → CO2 + H. The derived isotopic equilibrium constant for HOCO ?CO favors the enrichment of 13C in the more strongly bound HOCO.  相似文献   

4.
The determinations of the 13C fractionation in the decarboxylation of pure phenylpropiolic acid (PPA) above its melting point has been extended to higher degrees of decomposition of PPA by carrying out two-step decarboxylations to establish the maximum possible yield of carbon dioxide in the temperature interval of 423-475 K (58%). The result was compared with the yields of CO2 for decarboxylation of PPA in phenylacetylene solvent (PA) (much smaller, temperature dependent, and equal to 11% at 406 K). The ratios of carbon isotope ratios, R so/R pf, all smaller than 1.009 in the temperature interval 405-475 K, have been analyzed formally within the branched decomposition scheme of PPA, providing carbon dioxide and a decarboxylation resistant solid chemical compound enriched in 13C with respect to CO2. A general discussion of the 13C fractionation in the decarboxylation of pure PPA and PPA dissolved in PA is supplemented by the model calculation of the maximized skeletal 13C KIEs, in the linear chain propagation of the acetylene polymerization process. Further studies of the 13C fractionation in condensed phases and in different hydrogen defficient and hydrogen rich media have been suggested.  相似文献   

5.
Labeling experiments provide evidence that the Fe1- and CO1-mediated losses of H2 and 2 H2 from tetraline are extremely specific in that both reactions follow a clear syn-1,2-elimination involving C(1)/C(2) and C(3)/C(4), respectively. In the course of the multi-step reaction, the metal ions do not move from one side of the π-surface to the other. Independent experiments confirm that the kinetic isotope effect (KIE) associated with the loss of the first H2 molecule is indeed larger than the KIE for the elimination of the second H2 molecule.  相似文献   

6.
Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm−2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.  相似文献   

7.
The manipulation of the second coordination sphere for improving the electrocatalytic CO2 reduction has led to breakthroughs with hydrogen bonding, local proton source, or electrostatic effects. We have developed two atropisomers of an iron porphyrin complex with two urea functions acting as multiple hydrogen-bonding tweezers to lock the metal-bound CO2 in a similar fashion found in the carbon monoxide dehydrogenase (CODH) enzyme. The αα topological isomer with the two urea groups on the same side of the porphyrin provides a stronger binding affinity to tether the incoming CO2 in comparison to the αβ disposition. However, the electrocatalytic activity of the αβ atropisomer outperforms its congener with one of the highest reported turnover frequencies at low overpotential. The strong H/D kinetic isotope effect (KIE) observed for the αα system indicates the existence of a tight water hydrogen-bonding network for proton delivery which is disrupted by addition of an acid source. The small H/D KIE for the αβ isomer and the enhanced electrocatalytic performance on addition of stronger acid indicate the free access of protons to the bound CO2 on the opposite side of the urea arm.  相似文献   

8.
The first copper‐catalyzed intramolecular C(sp3)? H and C(sp2)? H oxidative amidation has been developed. Using a Cu(OAc)2 catalyst and an Ag2CO3 oxidant in dichloroethane solvent, C(sp3)? H amidation proceeded at a terminal methyl group, as well as at the internal benzylic position of an alkyl chain. This reaction has a broad substrate scope, and various β‐lactams were obtained in excellent yield, even on gram scale. Use of CuCl2 and Ag2CO3 under an O2 atmosphere in dimethyl sulfoxide, however, leads to 2‐indolinone selectively by C(sp2)? H amidation. Kinetic isotope effect (KIE) studies indicated that C? H bond activation is the rate‐determining step. The 5‐methoxyquinolyl directing group could be removed by oxidation.  相似文献   

9.
The first copper‐catalyzed intramolecular C(sp3) H and C(sp2) H oxidative amidation has been developed. Using a Cu(OAc)2 catalyst and an Ag2CO3 oxidant in dichloroethane solvent, C(sp3) H amidation proceeded at a terminal methyl group, as well as at the internal benzylic position of an alkyl chain. This reaction has a broad substrate scope, and various β‐lactams were obtained in excellent yield, even on gram scale. Use of CuCl2 and Ag2CO3 under an O2 atmosphere in dimethyl sulfoxide, however, leads to 2‐indolinone selectively by C(sp2) H amidation. Kinetic isotope effect (KIE) studies indicated that C H bond activation is the rate‐determining step. The 5‐methoxyquinolyl directing group could be removed by oxidation.  相似文献   

10.
cis- and trans - 2,3 - Dimethylenemethylenecyclopropane (C and T) interconvert at 160.0° with a small normal kinetic isotope effect (KIE) when the exo-methylene is deuterated, but the 1,3-shift products, 2-methylethylidenecyclopropane, show a large normal KIE, 1.35 and 1.31, when formed from C and T, respectively. This data can be interpreted in terms of either parallel reactions or a common trimethylenemethane diradical intermediate formed with a normal KIE of 1.11 and closing to 1,3-shift product with a normal KIE of 1.29 due to the effect of deuterium in the required 90° rotation of the exo-methylene carbon.The kinetics of the thermal 1,3- and 3,3-shifts of cis- and rans-3,4-dimethyl-1,2-dimethylenecyclobutane (CB and TB) were determined in a flow reactor. The first order rate constants are log kCB (sec?1) = 13.7 ? 42,200/2.3 RT and log kTB (sec?1) = 13.6 ? 41,900/2.3 RT (Ea in kcal/m) which compare favorably to that from the parent hydrocarbon. 1,2-dimethylenecyclobutane, after reasonable correction for dimethyl substitution.Rearrangement of TB and its bis(dideuteriomethylene) derivative at 230.0° revealed a normal KIE of 1.08. This KIE could be interpreted in terms of either a methylene rotational isotope effect in a concerted reaction or formation of a bisallyl diradical with the expected normal rotational IE on closure to the 1,3-shift product of 1.12 with no IE in the ring opening when the result is corrected for return of the biradical to starting material.The kinetics of intramolecular 2 + 2 cycloaddition of 1,2,8,9-decatetraene were determined in a flow reactor. The first order rate constant is log k(sec?1) = 9.4 ? 30,800/2.3 RT (Ea in kcal/m). These energetics are compared with those of other 2 + 2 cycloadditions. The major product is 3,4-dimethylenecyclooctene (DC) which is also found from the minor product, cis-7,8-dimethylenebicvyclo[4.2.0]octane (CO), at higher temperatures. The trans isomer, TO, also gives DC at about the same rate as CO.  相似文献   

11.
The photoexcitation of plasmonic nanoparticles has been shown to drive multistep, multicarrier transformations, such as the conversion of CO2 into hydrocarbons. But for such plasmon-driven chemistry to be precisely understood and modeled, the critical photoinitiation step in the reaction cascade must be identified. We meet this goal by measuring H/D and 12C/13C kinetic isotope effects (KIEs) in plasmonic photosynthesis. In particular, we found that the substitution of H2O with D2O slows hydrocarbon production by a factor of 5–8. This primary H/D KIE leads to the inference that hole-driven scission of the O−H bond in H2O is a critical, limiting step in plasmonic photosynthesis. This study advances mechanistic understanding of light-driven chemical reactions on plasmonic nanoparticles.  相似文献   

12.
The separation of acetylene (C2H2) from carbon dioxide (CO2) is a very important but challenging task due to their similar molecular dimensions and physical properties. In terms of porous adsorbents for this separation, the CO2-selective porous materials are superior to the C2H2-selective ones because of the cost- and energy-efficiency but have been rarely achieved. Herein we report our unexpected discovery of the first hydrogen bonded organic framework (HOF) constructed from a simple organic linker 2,4,6-tri(1H-pyrazol-4-yl)pyridine (PYTPZ) (termed as HOF-FJU-88) as the highly CO2-selective porous material. HOF-FJU-88 is a two-dimensional HOFs with a pore pocket of about 7.6 Å. The activated HOF-FJU-88 takes up a high amount of CO2 (59.6 cm3 g−1) at ambient conditions with the record IAST selectivity of 1894. Its high performance for the CO2/C2H2 separation has been further confirmed through breakthrough experiments, in situ diffuse reflectance infrared spectroscopy and molecular simulations.  相似文献   

13.
The δ13C (carbon isotope composition) variations in respired CO2, total organic matter, proteins, sucrose and starch have been measured during tuber sprouting of potato (Solanum tuberosum) in darkness. Measurements were carried out both on tubers and on their growing sprouts for 23 days after the start of sprout development. Sucrose was slightly 13C‐depleted compared with starch in tubers, suggesting that starch breakdown was associated with a small isotope fractionation. In sprouts, all biochemical fractions including sucrose were 13C‐enriched compared with source tuber‐sucrose, suggesting that sucrose translocation from tuber to sprouts fractionated against 12C. However, both apparent fractionations were explained by the consumption of 13C‐depleted carbon for respiration or growth that enriched in the 13C sucrose molecules left behind. In addition, whole tuber sucrose is constantly composed of recent sucrose from starch breakdown and old sucrose associated with an inherited, slightly 13C‐depleted pool. We therefore conclude that any fractionation at either the starch breakdown or the sucrose translocation level is unlikely under our conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The direct functionalization of sp3 C?H bonds through a tandem 1,5‐hydride shift/ring closure is described. Various optically active spirooxindole tetrahydroquinoline derivatives bearing contiguous quaternary or tertiary stereogenic carbon centers were readily synthesized. A chiral scandium complex of N,N′‐dioxide promoted the reactions in good yields (up to 97 %) with excellent diastereoselectivities (>20:1) and enantioselectivities (up to 94 % ee). Kinetic isotope effect (KIE) experiments and internal redox reactions of chiral substrates were conducted, and the results provided intriguing information that helped clarify the mechanism of the reaction.  相似文献   

15.
Recently, considerable interest has been shown in the reaction of carbon dioxide with olefins or alkynes caused by transition metal complexes. Incorporation of CO2 in oligomerizations of butadiene1) and 1-hexyne2) has been performed to give lactone derivatives by Pd-Ph2 PCH2 CH2 PPh2 and Ni (COD)2-Ph2P(CH2)4PPh2 (COD : 1,5-cyclooctadiene) systems, respectively. Very recently, Jolly et al. reported the reaction of CO2 with π-allylnickel complexes which are the key intermediates of the oligomerization of diolefins.3) For example, bis (η-methylallyl) nickel reacts with CO2 in the presence of a phosphine ligand to give a nickel carboxylate complex:  相似文献   

16.
Nonspherical cages in inclusion compounds can result in non‐uniform motion of guest species in these cages and anisotropic lineshapes in NMR spectra of the guest. Herein, we develop a methodology to calculate lineshape anisotropy of guest species in cages based on molecular dynamics simulations of the inclusion compound. The methodology is valid for guest atoms with spin 1/2 nuclei and does not depend on the temperature and type of inclusion compound or guest species studied. As an example, the nonspherical shape of the structure I (sI) clathrate hydrate large cages leads to preferential alignment of linear CO2 molecules in directions parallel to the two hexagonal faces of the cages. The angular distribution of the CO2 guests in terms of a polar angle θ and azimuth angle ? and small amplitude vibrational motions in the large cage are characterized by molecular dynamics simulations at different temperatures in the stability range of the CO2 sI clathrate. The experimental 13C NMR lineshapes of CO2 guests in the large cages show a reversal of the skew between the low temperature (77 K) and the high temperature (238 K) limits of the stability of the clathrate. We determine the angular distributions of the guests in the cages by classical MD simulations of the sI clathrate and calculate the 13C NMR lineshapes over a range of temperatures. Good agreement between experimental lineshapes and calculated lineshapes is obtained. No assumptions regarding the nature of the guest motions in the cages are required.  相似文献   

17.
Computer simulations of supercritical carbon dioxide and its mixtures with polar cosolvents: water, methanol, and ethanol (concentration, 0.125 mole fractions) at T = 318 K and ρ = 0.7 g/cm3 are performed. Atom-atom radial distribution functions are calculated by classical molecular dynamics, while the probability distributions of relative orientation of CO2 molecules in the first and second coordination spheres describing the geometry of the nearest environment of CO2 molecules and the trajectories of cosolvent molecules are found using Car-Parrinello molecular dynamics. Based on the latter, the conclusions regarding structure and interactions of polar entrainers in their mixtures with supercritical CO2 are made. It is shown that the microstructure of carbon dioxide varies only slightly upon the introduction of cosolvents.  相似文献   

18.
The results of molecular dynamics (MD) simulations on transport process of CO2 and CH4 gases in poly(ether-b- amide) (PEBAX)/nanosilica membranes are discussed. The diffusion coefficients for CH4 and CO2 gases at 6 cases with different amounts of nanosilica loading in the simulation boxes are presented. The results show that diffusion coefficients for CO2 gas in all cases are larger than those for the CH4 one. Moreover 10% nanosilica loading case shows maximum effects on diffusion coefficients and improves them by more than 68% and 157% for CO2 and CH4 gases, respectively. Additionally, the results of 3-D Cartesian trajectories and displacements curves are presented and the jumping attempt of CO2 is significantly more than that of CH4. Due to the rubbery state of PEBAX membranes in ambient temperature, the results confirm that channel lifetimes are very short and then back diffusion is not observed for this polymer.  相似文献   

19.
Studying ecosystem processes in the context of carbon cycling and climate change has never been more important. Stable carbon isotope studies of gas exchange within terrestrial ecosystems are commonly undertaken to determine sources and rates of carbon cycling. To this end, septum‐capped vials (‘Exetainers’) are often used to store samples of CO2 prior to mass spectrometric analysis. To evaluate the performance of such vials for preserving the isotopic integrity (δ13C) and concentration of stored CO2 we performed a rigorous suite of tests. Septum‐capped vials were filled with standard gases of varying CO2 concentrations (~700 to 4000 ppm), δ13C values (approx. ?26.5 to +1.8‰V‐PDB) and pressures (33 and 67% above ambient), and analysed after a storage period of between 7 and 28 days. The vials performed well, with the vast majority of both isotope and CO2 concentration results falling within the analytical uncertainty of chamber standard gas values. Although the study supports the use of septum‐capped vials for storing samples prior to mass spectrometric analysis, it does highlight the need to ensure that sampling chamber construction is robust (air‐tight). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
We report here our investigations using Monte Carlo and molecular dynamics (MD) simulations, as well as quasi-elastic neutron scattering experiments, to study the adsorption and diffusion of H2 and D2 in zeolite Rho. In the simulations, quantum effects are incorporated via the Feynman-Hibbs variational approach. At low temperatures, we observe a reversal of kinetic molecular sieving in which D2 diffuses faster than H2. Based on fits of bulk data, we suggest new set of potential parameters for hydrogen, with the Feynman-Hibbs variational approach used for quantum corrections. The transport properties obtained from MD simulations are in excellent agreement with the experimental results, with both showing significant quantum effects on the transport at low temperature. The MD simulation results on two different structures of zeolite Rho clearly demonstrate that the quantum effect is very sensitive to pore size. High transport flux selectivity is noted at low temperatures, suggesting feasibility of kinetic isotope separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号