共查询到20条相似文献,搜索用时 0 毫秒
1.
The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model. 相似文献
2.
Tiangang Zhang Seiichi Koshizuka Kohei Murotani Kazuya Shibata Eiji Ishii Masanori Ishikawa 《International Journal of Computational Fluid Dynamics》2016,30(2):155-175
The boundary conditions represented by polygons in moving particle semi-implicit (MPS) method (Koshizuka and Oka, Nuclear Science and Engineering, 1996) have been widely used in the industry simulations since it can simply simulate complex geometry with high efficiency. However, the inaccurate particle number density near non-planar wall boundaries dramatically affects the accuracy of simulations. In this paper, we propose an initial boundary particle arrangement technique coupled with the wall weight function method (Zhang et al. Transaction of JSCES, 2015) to improve the particle number density near slopes and curved surfaces with boundary conditions represented by polygons in three dimensions. Two uniform grids are utilized in the proposed technique. The grid points in the first uniform grid are used to construct boundary particles, and the second uniform grid stores the same information as in the work by Zhang et al. The wall weight functions of the grid points in the second uniform grid are calculated by newly constructed boundary particles. The wall weight functions of the fluid particles are interpolated from the values stored on the grid points in the second uniform grid. Because boundary particles are located on the polygons, complex geometries can be accurately represented. The proposed method can dramatically improve the particle number density and maintain the high efficiency. The performance of the previously proposed wall weight function (Zhang et al.) with the boundary particle arrangement technique is verified in comparison with the wall weight function without boundary particle arrangement by investigating two example geometries. The simulations of a water tank with a wedge and a complex geometry show the general applicability of the boundary particle arrangement technique to complex geometries and demonstrate its improvement of the wall weight function near the slopes and curved surfaces. 相似文献
3.
Determining boundary conditions (BCs) for incompressible flows is such a delicate matter that affects the accuracy of the results. In this research, a new characteristic‐based BC for incompressible Navier‐Stokes equations is introduced. Discretization of equations has been done via finite volume. Additionally, artificial compressibility correction has been employed to deal with equations. Ordinary extrapolation from inner cells of a domain was used as a traditional way to estimate pressure and velocities on solid wall and inlet/outlet boundaries. Here, this method was substituted by the newly proposed BCs based on the characteristics of artificial compressibility equations. To follow this purpose, a computer code has been developed to carry out series of numerical tests for a flow over a backward‐facing step and was applied to a wide range of Reynolds numbers and grid combinations. Calculation of convective and viscous fluxes was done using Jameson's averaging scheme. Employing the characteristic‐based method for determining BCs has shown an improved convergence rate and reduced calculation time comparing with those of traditional ones. Furthermore, with the reduction of domain and computational cells, a similar accuracy was achieved for the results in comparison with the ones obtained from the traditional extrapolation method, and these results were in good agreement with the ones in the literature. 相似文献
4.
邹光远 《应用数学和力学(英文版)》1994,15(8):735-743
THEHIGHPRECISIONOPENBOUNDARYCONDITIONSDESIGNEDFORTRANSIENTWAVESZouGuang-yuan(邹光远)(DepartmentofMechanics.PekingUniversityBeiji... 相似文献
5.
Guangtao Duan Takuya Matsunaga Akifumi Yamaji Seiichi Koshizuka Mikio Sakai 《国际流体数值方法杂志》2021,93(1):148-175
Corrective matrix that is derived to restore consistency of discretization schemes can significantly enhance accuracy for the inside particles in the Moving Particle Semi‐implicit method. In this situation, the error due to free surface and wall boundaries becomes dominant. Based on the recent study on Neumann boundary condition (Matsunaga et al, CMAME, 2020), the corrective matrix schemes in MPS are generalized to straightforwardly and accurately impose Neumann boundary condition. However, the new schemes can still easily trigger instability at free surface because of the biased error caused by the incomplete/biased neighbor support. Therefore, the existing stable schemes based on virtual particles and conservative gradient models are applied to free surface and nearby particles to produce a stable transitional layer at free surface. The new corrective matrix schemes are only applied to the particles under the stable transitional layer for improving the wall boundary conditions. Three numerical examples of free surface flows demonstrate that the proposed method can help to reduce the pressure/velocity fluctuations and hence enhance accuracy further. 相似文献
6.
The stability and accuracy of radiation type non‐reflective outflow boundary conditions, as well as the standard Neumann boundary condition with zero normal derivative, have been compared for the numerical simulation of a turbulent axisymmetric plume with Reynolds number of 7700 and Prandtl number of 0.71. Comparison of the performance of the boundary conditions with respect to each other, and to the results obtained for an extended domain, shows that a one‐dimensional scheme in which advection and diffusion terms are included in the radiation equation is the optimum approach for the plume simulation. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
7.
A significant improvement of the open boundary condition which was originally studied by Engquist and Majda is given. The
method given here is applicable without limitation of the angle between the direction of the incident wave and the normal
to the boundary. It also improves the precision of the method from order one to two. The test examples show that this method
is much better than the method mentioned above.
Inst. of Software, Academia Sinica 相似文献
8.
9.
Naoki Tsuruta Hitoshi Gotoh 《International Journal of Computational Fluid Dynamics》2015,29(1):100-119
Particle methods have been seldom verified by a Karman vortex simulation, which is commonly performed as a typical benchmark in computational fluid dynamics. This is mainly due to a difficulty in suppression of occurrence of unphysical voids manifested usually in a strong vortex on account of definition of free surface by the Lagrangian tracking framework with inconsistency in volume conservation. This paper presents a simple and effective scheme as a free-surface boundary condition of projection-based particle methods, namely the MPS (moving particle semi-implicit) and Incompressible SPH (ISPH) methods to handle the free surface with consistency in volume conservation. The new scheme is introduced into the Poisson pressure equation (PPE) with consideration of a potential in void space as space potential particle (SPP), to reproduce physical motions of particles around free surface through a particle–void interaction. The enhancing effect of the newly proposed SPP scheme is shown by simulating a few numerical tests, including a whirling water flow, a two-phase surfacing flow, and a set of Karman vortex simulations. 相似文献
10.
An innovative inflow/outflow boundary treatment has been proposed to be used in smoothed particle hydrodynamics (SPH). Among other strategies, it involves the use of extended regions at open boundary sections and a procedure to enforce the mass continuity constraint, as well as to minimize outflow reflections. This methodology has been coupled with a modified ‘particle shifting’ algorithm, so that the robustness of the method could be ensured at high Reynolds number regimes. Confined flow around a square cylinder with an open outflow has been selected as the flow problem to analyze the performance of the new method. Detailed comparisons with data available in the literature for a variety of mesh‐based methods have been made for two different values of the blockage ratio β, namely for β = 1/4 and 1/8, and a range of supercritical Reynolds numbers. The results obtained with the present implementation of truly incompressible SPH have demonstrated numerical accuracy comparable with that of other methods, as well as the success of the open boundary treatment. A direct comparison with previously published SPH results for a distinct blockage ratio, namely for β = 1/5, has also revealed that a major improvement has been achieved by the use of the method described in this paper. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
11.
This paper presents mechanical quadrature methods (MQMs) for solving nonlinear boundary Helmholtz integral equations. The
methods have high accuracy of order O(h
3) and low computation complexity. Moreover, the mechanical quadrature methods are simple without computing any singular integration.
A nonlinear system is constructed by discretizing the nonlinear boundary integral equations. The stability and convergence
of the system are proved based on an asymptotical compact theory and the Stepleman theorem. Using the h
3-Richardson extrapolation algorithms (EAs), the accuracy to the order of O(h
5) is improved. To slove the nonlinear system, the Newton iteration is discussed extensively by using the Ostrowski fixed point
theorem. The efficiency of the algorithms is illustrated by numerical examples. 相似文献
12.
A grid‐less, fully implicit, spectrally accurate algorithm for solving three‐dimensional, both stationary and time‐dependent, heat conduction problems in slots formed by either fixed or time‐dependent boundaries has been developed. The algorithm is based on the concept of immersed boundary conditions (IBC), where the physical domain is immersed within the computational domain and the boundary conditions take the form of internal constraints. The IBC method avoids the need to construct adaptive, time‐dependent grids resulting in the reduction of the required computational resources and, at the same time, maintaining accurate information about the location of the boundaries. The algorithm is spectrally accurate in space and capable of delivering first‐, second‐, third‐ and fourth‐order accuracy in time. Given a potentially large size of the resultant linear algebraic system, various methods that take advantage of the special structure of the coefficient matrix have been explored in search for an efficient solver, including a specialized direct solver as well as serial and parallel iterative solvers. The specialized direct solver has been found to be the most efficient from the viewpoints of the speed of the computations and the memory requirements. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
13.
Hassan Akbari 《国际流体数值方法杂志》2019,90(12):603-631
The smoothed particle hydrodynamics (SPH) method is one of the powerful Lagrangian tools for modeling free surface flows. However, it suffers from particle disorder, which leads to interpolation and numerical errors. To overcome this problem, several techniques have been introduced until now, among which the particle shifting technique (PST) based on Fick's law is an efficient one. The current form of this method needs tuning parameters to fulfill numerical stability criteria. In this study, to eliminate calibration factors, a new shifting coefficient is derived theoretically based on particle positions before and after shifting, regardless of other parameters such as velocity, pressure, time step intervals, etc. The only required input is particle positions, and the main concern is conserving particle densities in their updated positions. In addition to the proposed PST, a new distribution index (DI) is introduced for measuring the spatial uniformity of particles. Furthering the research, some novel treatments are also studied to improve particle movements near free surface boundary. The proposed idea is only assessed for ISPH method in this study, and its performance in other SPH schemes needs more investigations. Following this innovative method, it is validated by modeling different cases including dam break flow, paddle movement, and elliptical water drop. In all cases, particle arrangements have been improved by means of the modified shifting method. In that sense, good agreements between simulation results with experimental data, analytical solutions, and other numerical methods approve the ability of the developed method in simulating free surface flows. 相似文献
14.
In this paper we consider symmetric and antisymmetric periodic boundary conditions for flows governed by the incompressible Navier-Stokes equations. Classical periodic boundary conditions are studied as well as symmetric and antisymmetric periodic boundary conditions in which there is a pressure difference between inlet and outlet. The implementation of this type of boundary conditions in a finite element code using the penalty function formulation is treated and also the implementation in a finite volume code based on pressure correction. The methods are demonstrated by computation of a flow through a staggered tube bundle. 相似文献
15.
Two different techniques for the implementation of the linear and nonlinear slip boundary conditions into a finite volume method based numerical code are presented. For the linear Navier slip boundary condition, an implicit implementation in the system of equations is carried out for which there is no need for any relaxation, especially when handling high slip coefficients. For three different nonlinear slip boundary conditions, two different methods are devised, one based on solving a transcendental equation for the boundary and the other on the linearization of the slip law. For assessment purposes, comparison is made between these new methods and the usual iterative process. With these new methods, the convergence difficulties, typical of the iterative procedure, are eliminated, and for some of the test cases, the convergence rate even increased with the slip velocity. The details of these implementations are given first for a simple geometry using orthogonal meshes and Cartesian coordinates followed by their generalization to non‐Cartesian coordinates and nonorthogonal meshes. The developed code was tested in the benchmark slip‐stick and 4:1 contraction flows, evidencing the robustness of the proposed procedures. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
16.
We introduce a mass‐flux‐based inlet boundary condition for the lattice‐Boltzmann method. The proposed boundary condition requires minimal amount of boundary data, it produces a steady‐state velocity field which is accurate close to the inlet even for arbitrary inlet geometries, and yet it is simple to implement. We demonstrate its capability for both simple and complex inlet geometries by numerical experiments. For simple inlet geometries, we show that the boundary condition provides very accurate inlet velocities when Re?1. Even with moderate Reynolds number, the inlet velocities are accurate for practical purposes. Furthermore, the potential of our boundary condition to produce inlet velocities which convincingly adapt to complex inlet geometries is highlighted with two specific examples. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
17.
We investigate Hopf bifurcation of an example reaction-diffusion system on a square domain with Robin boundary conditions; the Brusselator equations. By performing a smooth homotopy of boundary conditions from Neumann to Dirichlet type, we observe the creation of branches of periodic solutions with submaximal symmetry in codimension two bifurcations, although we do not fully calculate the branching behaviour. We also note that mode interactions behave generically on varying the boundary conditions. The investigation is performed using a numerical Liapunov-Schmidt reduction technique of Ashwin, Böhmer, and Mei (1994) and an analysis of Swift (1988). 相似文献
18.
This paper deals with the design of an efficient open boundary condition (OBC) for fluid dynamics problems. Such problematics arise, for instance, when one solves a local model on a fine grid that is nested in a coarser one of greater extent. Usually, the local solution Uloc is computed from the coarse solution Uext, thanks to an OBC formulated as , where Bh and BH are discretizations of the same differential operator (Bh being defined on the fine grid and BH on the coarse grid). In this paper, we show that such an OBC cannot lead to the exact solution, and we propose a generalized formulation , where g is a correction term. When Bh and BH are discretizations of a transparent operator, g can be computed analytically, at least for simple equations. Otherwise, we propose to approximate g by a Richardson extrapolation procedure. Numerical test cases on a 1D Laplace equation and on a 1D shallow water system illustrate the improved efficiency of such a generalized OBC compared with usual ones. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
19.
沙土滑坡往往会造成重大的人身财产损失,研究这类土体大变形问题对防灾工程具有指导意义。光滑粒子流体动力学SPH(Smoothed Particle Hydrodynamics)方法是一种拉格朗日型无网格粒子法,十分适用于模拟大变形问题。在SPH方法中,合适的边界处理方法一直是个难点,传统的边界虚粒子法或排斥力法较难模拟复杂边界。本文引入了一种能处理任意形状边界的方法——统一半解析壁面边界条件处理方法USAW(unified semi-analytical wall boundary conditions),通过在控制方程中引入修正因子并保留边界面积分项来弥补边界缺失。为了更准确模拟问题域边界,提出无质量边界粒子的新概念。利用该方法成功模拟了土体滑坡算例,验证了方法的可靠性,并避免了边界零粒子层问题。通过数值模拟,分析了内摩擦角和黏聚力等土体物性参数对滑坡过程的影响。最后,应用该方法研究了滑坡冲击楔形体时的压力响应。 相似文献
20.
The main objective of this paper is to apply an Adomian modified decomposition method for solving large amplitude vibration analysis of stepped beams with various general and elastic boundary conditions. Damaged or imperfect supports of beams can be modeled by using elastic boundary conditions composing of translational and rotational springs. For the beams subjected to dynamic severe loading, it is important to include the nonlinear term of axial stretching force developed by the large vibration amplitude in the governing equation for more accurate design. By using the method, the convergence studies for linear and nonlinear vibration analyses of stepped beams are shown for determining an appropriate number of terms in the solutions. The accuracy of the present results is validated numerically by comparing with some available results in the literature. New results of nonlinear frequency ratios of stepped beams with different boundary conditions are presented and discussed in detail. Aspects of step ratio, step location, boundary conditions, vibration amplitudes, etc., which have significant impact on linear and nonlinear frequencies of such beams are taken under investigation. 相似文献