共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum chemistry calculations have been performed using Gaussian03 program to compute optimized geometry, harmonic vibrational
frequency along with intensities in IR and Raman spectra at RHF/6-31++G** and B3LYP/6-31++G** levels for phenobarbitone (C12H12N2O3) in the ground state. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR and FT-Raman
spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions
(PEDs) using MOLVIB program. A detailed interpretation of the infrared spectra of the title compound is reported. On the basis
of the agreement between the calculated and observed results, the assignments of fundamental vibrational modes of phenobarbitone
were examined and some assignments were proposed. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title
compound have been constructed. 相似文献
2.
3.
4.
S. A. Siddiqui A. Dwivedi P. K. Singh T. Hasan S. Jain O. Prasad N. Misra 《Journal of Structural Chemistry》2009,50(3):411-420
This work is devoted to theoretical study on molecular structure of protopine. The equilibrium geometry, harmonic vibrational frequencies and infrared intensities were calculated by ab initio Hartree-Fock and density functional B3LYP methods with the 6-31G(d) basis set and were interpreted in terms of potential energy distribution (PED) analysis. The internal coordinates were optimized repeatedly for many times to maximize the PED contributions. A detailed interpretation of the infrared spectra of protopine is reported. The calculations are in agreement with experiment. The thermodynamic functions of the title compound were also performed at HF/6-31G(d) and B3LYP/6-31G(d) level of theory. The FT-IR spectra of protopine were recorded in solid phase. 相似文献
5.
Liu Z Zhang X Zhang Y Jiang J 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2007,67(5):1232-1246
A theoretical investigation of the fully optimized geometries and electronic structures of metallophthalocyanines FePc, CoPc, NiPc, CuPc and ZnPc has been conducted with the density functional theory (DFT) method. A comparison between the different molecules for the geometry, molecular orbital, and atomic charge is made. The simulated order of the sizes of the central hole is FePc>CoPc>NiPcNiPc>CuPc>ZnPc, and the atomic charges of the central metal (M=Fe, Co, Ni, Cu, Zn) ions vary in the same order, FePc>CoPc>NiPcCoPc>FePc>CuPc>ZnPc, and the corresponding peaks predicted at 894, 896, 898, 882 and 871 cm(-1), respectively, also exhibit the same order as above-mentioned. Moreover, the lines of fit through plots of the experimental IR and Ra frequencies versus the calculated ones show very good correlations. 相似文献
6.
L. Padmaja M. Amalanathan C. Ravikumar I. Hubert Joe 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2009,74(2):349-356
Vibrational analysis of the 2,6-bis(p-methyl benzylidene cyclohexanone) [PMBC] compound was carried out by using NIR FT-Raman and FT-IR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of PMBC have been investigated with the help of B3LYP/6-31G(d) density functional theory method. The optimized geometry clearly demonstrates cyclohexanone ring chair conformation is changed into half-chair conformation. The shortening of C–H bond length and blue shifting of the CH stretching wavenumber suggest the existence of improper weak C–HO hydrogen bonding, which is confirmed by the natural bond orbital analysis. The Mulliken population analysis on atomic charges and the HOMO–LUMO energy are also calculated. 相似文献
7.
Applicability of density functional theory in reproducing accurate vibrational spectra of surface bound species 下载免费PDF全文
Ivana Matanović Plamen Atanassov Boris Kiefer Fernando H. Garzon Neil J. Henson 《Journal of computational chemistry》2014,35(26):1921-1929
The structural equilibrium parameters, the adsorption energies, and the vibrational frequencies of the nitrogen molecule and the hydrogen atom adsorbed on the (111) surface of rhodium have been investigated using different generalized‐gradient approximation (GGA), nonlocal correlation, meta‐GGA, and hybrid functionals, namely, Perdew, Burke, and Ernzerhof (PBE), Revised‐RPBE, vdW‐DF, Tao, Perdew, Staroverov, and Scuseria functional (TPSS), and Heyd, Scuseria, and Ernzerhof (HSE06) functional in the plane wave formalism. Among the five tested functionals, nonlocal vdW‐DF and meta‐GGA TPSS functionals are most successful in describing energetics of dinitrogen physisorption to the Rh(111) surface, while the PBE functional provides the correct chemisorption energy for the hydrogen atom. It was also found that TPSS functional produces the best vibrational spectra of the nitrogen molecule and the hydrogen atom on rhodium within the harmonic formalism with the error of ?2.62 and ?1.1% for the N? N stretching and Rh? H stretching frequency. Thus, TPSS functional was proposed as a method of choice for obtaining vibrational spectra of low weight adsorbates on metallic surfaces within the harmonic approximation. At the anharmonic level, by decoupling the Rh? H and N? N stretching modes from the bulk phonons and by solving one‐ and two‐dimensional Schrödinger equation associated with the Rh? H, Rh? N, and N? N potential energy we calculated the anharmonic correction for N? N and Rh? H stretching modes as ?31 cm?1 and ?77 cm?1 at PBE level. Anharmonic vibrational frequencies calculated with the use of the hybrid HSE06 function are in best agreement with available experiments. © 2014 Wiley Periodicals, Inc. 相似文献
8.
用多种密度泛函理论(DFT)方法(BLYP/6-31G^*^*,B3LYP/6-31G^*^*,B3PW91/6-31G^*^*和SVWN/6-31G^*^*)对吲哚分子的平衡几何构型进行了优化。在优化构型的基础上计算了吲哚分子的谐力场、振动基频和红外光谱强度。计算得到的振动频率与实验值比较平均偏差对四种计算方法(BLYP/6-31G^*^*,P3LYP/6-31G^*^*,B3PW91/6-31G^*^*和SVWN/6-31G^*^*)分别为16.3,40.5,45.1和26.4cm^-^1。BLYP/6-31G^*^*理论力场被用于吲哚分子的简正坐标分析计算中。根据振动率的势能分布(PEDs)对此分子的振动基频进行了理论归属。 相似文献
9.
M. Alcolea Palafox G. Tardajos A. Guerrero-Martínez V.K. Rastogi D. Mishra S.P. Ojha W. Kiefer 《Chemical physics》2007,340(1-3):17-31
FT-IR and FT-Raman spectra of the biomolecule 5-aminouracil were recorded in the regions 400–4000 cm−1 and 10–3500 cm−1, respectively. The observed vibrational wavenumbers were analyzed and assigned to different normal modes of vibration of the molecule. Density functional calculations were performed to support wavenumber assignments of the observed bands. A comparison with the molecule of uracil was made, and specific scale factors were employed in the predicted wavenumbers of 5-aminouracil. With the purpose of study the important molecule 5-aminouracil, its equilibrium geometry and harmonic wavenumbers were calculated for the first time by the B3LYP DFT method. The vibrational wavenumbers were compared with IR and Raman experimental data. Also good reproduction of the experimental wavenumbers is obtained and the % error is very small. All the tautomeric forms of 5-aminouracil were determined and optimized. The dimer forms were also simulated. The energy, atomic charges and dipole moments were discussed and several general conclusions were underlined. 相似文献
10.
11.
Joshi BD Srivastava A Tandon P Jain S 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2011,82(1):270-278
Yohimbine hydrochloride (YHCl) is an aphrodisiac and promoted for erectile dysfunction, weight loss and depression. The optimized geometry, total energy, potential energy surface and vibrational wavenumbers of yohimbine hydrochloride have been determined using ab initio, Hartree–Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set. A complete vibrational assignment is provided for the observed Raman and IR spectra of YHCl. The UV absorption spectrum was examined in ethanol solvent and compared with the calculated one in gas phase as well as in solvent environment (polarizable continuum model, PCM) using TD-DFT/6-31G basis set. These methods are proposed as a tool to be applied in the structural characterization of YHCl. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap are presented. 相似文献
12.
《Comptes Rendus Chimie》2015,18(5):516-524
Density functional theory (DFT) is applied to obtain absorption spectra at THz frequencies for molecular clusters of H2O. The vibrational modes of the clusters are calculated. Coupling among molecular vibrational modes explains their spectral features associated with THz excitation. THz excitation is associated with vibrational frequencies which are here calculated within the DFT approximation of electronic states. This is done for both isolated molecules and collections of molecules in a cluster. The principal result of the paper is that a crystal-like cluster of 38 water molecules together with a continuum solvent background is sufficient to replicate well the experimental vibrational frequencies. 相似文献
13.
The molecular geometry and vibrational frequencies of lepidine and 2-chlorolepidine in the ground state have been calculated by using the Hartree–Fock and density functional methods (B3LYP) with 6-31G (d) as the basis set. The optimized geometric bond lengths obtained by using B3LYP and bond angles obtained by HF that correspond to the experimental values of 2-cl-lepidine molecule were given. Comparison of the observed fundamental vibrational frequencies of lepidine and 2-chlorolepidine, and calculated results by density functional B3LYP and Hartree–Fock methods indicates that B3LYP is superior to the scaled Hartree–Fock approach for molecular vibrational problems. 相似文献
14.
Theoretical investigation of nitro derivatives of tetrazole with density functional theory (DFT) 总被引:3,自引:0,他引:3
The B3LYP of density function theory (DFT) method was employed to calculate seven nitrotetrazoles. The optimized geometries, IR spectra and thermodynamic properties at 6-31G* level are obtained. Their heats of formation were computed accurately using the designed isodemic and isogyric reactions. The calculated total energies and heats of formation consistently show that C-nitrotetrazoles are more stable than the N-isomers. 相似文献
15.
New Schiff base ligand (H2L, 1,2‐bis[(2‐(2‐hydroxyphenylimino)‐methyl)phenoxy]ethane) came from condensation reaction of bisaldehyde and 2‐aminophenol was synthesized in a molar ratio 1:2. Metal complexes and the ligand were completely discussed with spectroscopic and theoretical mechanism. The complexes with Fe(III), Cr(III), Mn(II), Co(II), Cu(II), Ni(II), Th(IV) and Zn(II) have been discussed and characterized by elemental analyses, molar conductance, IR, mass spectroscopy, thermal, magnetic measurements, and 1H NMR. The results proved that the Schiff base was a divalent anion with hexadentate O4N2 donors came from the etheric oxygens (O1, O2), azomethine nitrogens (N1, N2) and deprotonated phenolic oxygens (O3, O4). Density Functional Theory using (B3LYP/6‐31G*) level of theory were implemented to predict molecular geometry, Mulliken atomic energetic and charges of the ligand and complexes. The calculation display that complexes had weak field ligand. The binding energy ranged from 650.5 to 1499.0 kcal/mol for Mn(II) and Th(IV) complexes, respectively. The biological behavior of the Schiff base ligand and its metal complexes were displayed against bacteria and fungi organisms. Fe(III) complex gave remarkable biological activity in comparison with the parent bis Schiff base. 相似文献
16.
17.
In this work, the Fourier transform Raman and Fourier transform infrared spectra of 2-chloronicotinic acid (2-CNA) are recorded in the solid phase. The molecular geometry, vibrational frequencies, infrared intensities and Raman scattering activities of 2-CNA in ground state have been calculated by using ab initio Hartree–Fock (HF) and density functional (B3LYP and B3PW91) methods with 6-31G(d) and 6-311G(d) basis sets level. On the basis of the comparison between calculated and experimental results and the comparison with related molecule, assignments of fundamental vibrational modes are examined. The optimized geometric parameters (bond lengths and bond angles) obtained by using HF show the best agreement with the experimental values of 2-CNA. Comparison of the observed fundamental vibrational frequencies of 2-CNA and calculated results by density functional (B3LYP and B3PW91) and Hartree–Fock methods indicates that B3LYP is superior to the scaled Hartree–Fock and B3PW91 approach for molecular vibrational problems. 相似文献
18.
Sumimoto M Kawashima Y Hori K Fujimoto H 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,71(1):286-287
A recent paper by Lui et al. [Z. Liu, X. Zhang, Y. Zhang, J. Jiang, Spectrochim. Acta A 67 (2007) 1232] reported on the theoretical investigations of the fully optimized geometries and electronic structures of iron (II) phthalocyanine (FePc) with the singlet spin state carried out with the restricted density functional theory (DFT) method, where the B3LYP functional was adopted for the exchange-correlation term; however, the triplet spin state was experimentally reported, and we also obtained the triplet spin state by the unrestricted DFT calculations. 相似文献
19.
We propose a new approach for analysis of Auger electron spectra (AES) of polymers by density functional theory (DFT) calculations with the Slater's transition-state concept. Simulated AES and X-ray photoelectron spectra (XPS) of four polymers [(CH2CH2)n (PE), (CH2CH(CH3))n (PP), (CH2CH(OCH3))n (PVME), and (CH2CH(COCH3))n (PVMK)] by DFT calculations using model dimers are in a good accordance with the experimental ones. The experimental AES of the polymers can be classified in each range of 1s-2p2p, 1s-2s2p, and 1s-2s2s transitions for C KVV and O KVV spectra, and in individual contributions of the functional groups from the theoretical analysis. 相似文献
20.
The structure of the peroxyacetic acid (PAA) molecule and its conformational mobility under rotation about the peroxide bond was studied by ab initio and density functional methods. The free rotation is hindered by the trans-barrier of height 22.3 kJ mol–1. The equilibrium molecular structure of AcOOH (C
s symmetry) is a result of intramolecular hydrogen bond. The high energy of hydrogen bonding (46 kJ mol–1 according to natural bonding orbital analysis) hampers formation of intermolecular associates of AcOOH in the gas and liquid phases. The standard enthalpies of formation for AcOOH (–353.2 kJ mol–1) and products of radical decomposition of the peroxide — AcO· (–190.2 kJ mol–1) and AcOO· (–153.4 kJ mol–1) — were determined by the G2 and G2(MP2) composite methods. The O—H and O—O bonds in the PAA molecule (bond energies are 417.8 and 202.3 kJ mol–1, respectively) are much stronger than in alkyl hydroperoxide molecules. This provides an explanation for substantial contribution of non-radical channels of the decomposition of peroxyacetic acid. The electron density distribution and gas-phase acidity of PAA were determined. The transition states of the ethylene and cyclohexene epoxidation reactions were located (E
a = 71.7 and 50.9 kJ mol–1 respectively). 相似文献