首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic chemosensors with excited-state intramolecular proton transfer (ESIPT) behavior have attracted much attention because it has great potential in a wide range of applications. Considering the paramount behavior of excited-state relaxation, in this work, we mainly focus on deciphering photo-induced hydrogen bonding effects and ESIPT mechanism for the novel 2-(benzo[d]thiazol-2-yl)-4-(9H-carbazol-9-yl)phenol (mCzOH) dye. Considering the effects of different solvents on excited-state dynamics of mCzOH flurophore, we adopt four solvents with different polarities. Analyses of fundamental structural changes, infrared (IR) vibrational spectra, and core valence partition index between S0 and S1 state, we confirm hydrogen bond O H···N of mCzOH should be enhanced via photoexcitation. Especially, the increase of solvent polarity could promote hydrogen bonding strengthening degree. Intramolecular charge transfer (ICT) resulting from photoexcitation qualitatively facilitates the ESIPT occurrence to a large extent. For further checking and probing into ESIPT mechanism, via constructing potential energy curves (PECs) in four solvents, we clarify the ESIPT behavior for mCzOH. Most worthy of mention is that polar solvent plays critical roles in lowering potential barrier of ESIPT reaction and in facilitating ESIPT process. We not only clarify the detailed excited-state process, but also present the solvent-polarity-dependent ESIPT mechanism for mCzOH fluorophore.  相似文献   

2.
3.
In this work, density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods are used to explore the excited‐state intramolecular proton transfer (ESIPT) mechanism of a novel system 4′‐dimethylaminoflavonol (DAF). By analyzing the molecular electrostatic potential (MEP) surface, we verify that the intramolecular hydrogen bond in DAF exists in both the S0 and S1 states. We calculate the absorption and emission spectra of DAF in two solvents, which reproduce the experimental results. By comparing the bond lengths, bond angles, and relative infrared (IR) vibrational spectra involved in the hydrogen bonding of DAF, we confirm the hydrogen‐bond strengthening in the S1 state. For further exploring the photoexcitation, we use frontier molecular orbitals to analyze the charge redistribution properties, which indicate that the charge transfer in the hydrogen‐bond moiety may be facilitating the ESIPT process. The constructed potential energy curves in acetonitrile and methylcyclohexane solvents with shortened hydrogen bond distances demonstrate that proton transfer is more likely to occur in the S1 state due to the lower potential barrier. Comparing the results in the two solvents, we find that aprotic polar and nonpolar solvents seem to play similar roles. This work not only clarifies the excited‐state behaviors of the DAF system but also successfully explains its spectral characteristics.  相似文献   

4.
The skeletal motions contributing to the reaction path of the ultrafast excited state intramolecular proton transfer (ESIPT) are determined directly from time resolved measurements. We investigate the ESIPT in the compounds 2-(2′-hydroxyphenyl)benzothiazole, 2-(2′-hydroxyphenyl)benzoxazole and ortho-hydroxybenzaldehyde by UV–visible pump-probe spectroscopy with 30 fs resolution. The proton transfer is observed in real time and a characteristic ‘ringing’ of the molecule in a small number of vibrational modes is found after the reaction. The results show that a bending motion of the molecular skeleton reduces the proton donor–acceptor distance and an electronic configuration change occurs at a sufficient contraction leading to the bonds of the product conformer. The process evolves as a ballistic wavepacket propagation on an adiabatic potential energy surface. The proton is shifted by the skeletal motions from the donor to the acceptor site and tunneling has not to be considered.  相似文献   

5.
Given the paramount importance of excited-state relaxation in the photochemical process, excited-state hydrogen bonding interactions and excited-state intramolecular proton transfer (ESIPT) are always hot topics. In this work, we theoretically explore the excited-state dynamical behaviors for a novel 2-(3,5-dichloro-2,6-dihydroxy-phenyl)-benzoxazole-6-carboxylicacid (DDPBC) system. As two intramolecular hydrogen bonds (O1 H2⋯N3 and O4 H5⋯O6) exist in the DDPBC structure, we first check if the double proton transfer form cannot be formed in the S1 state. Then, we explore the changes of geometrical parameters involved in hydrogen bonds, based on which we confirm that the dual intramolecular hydrogen bonds are strengthened on photo-excitation. The O1 H2⋯N3 hydrogen bond particularly plays a more important role in excited state. When it comes to the photo-induced excitation, we find charge transfer and electronic density redistribution around O1 H2 and N3 atom moieties. We verify the ESIPT tendency arising from the O1 H2⋯N3 hydrogen bond. In the analysis of the potential energy curves, along with O1 H2⋯N3 and O4 H5⋯O6, we demonstrate that the ESIPT reaction should occur along with O1 H2⋯N3 rather than O4 H5⋯O6. This work not only clarifies the specific ESIPT mechanism for DDPBC system but also paves the way for further novel applications based on DDPBC structure in the future.  相似文献   

6.
Potential energy surfaces (PES) for the ground and excited state intramolecular proton transfer (ESIPT) processes in 5-hydroxy-flavone (5HF) were studied using DFT-B3LYP/6-31G(d) and TD-DFT/6-31G(d) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer (GSIPT) in 5HF. Excited states PES calculations support the existence of ESIPT process in 5HF. ESIPT in 5HF has been explained in terms of HOMO, LUMO electron density of the enol and keto tautomer of 5HF. PES scan by phenyl group rotation suggests that the twisted form, i.e., phenyl group rotated by 18.7° out of benzo-γ-pyrone ring plane is the most stable conformer of 5HF.  相似文献   

7.
Excited-state intramolecular proton transfer (ESIPT) in the 2,4,5-triarylimidazole molecules was studied by spectral-luminescent technique. For 4,5-diphenyl-(2-hydroxyphenyl)imidazoles, the ESIPT occurs in both liquid and glassy matrices at 77 K. For 4,5-diphenyl-(2-hydroxynaphthyl)imidazole, the ESIPT requires rotation of molecular fragments and is not observed at 77 K.  相似文献   

8.
Detailed insights into the excited-state enol(N*)-keto(T*) intramolecular proton transfer (ESIPT) reaction in 2-(2'-hydroxy-4'-diethylaminophenyl)benzothiazole (HABT) have been investigated via steady-state and femtosecond fluorescence upconversion approaches. In cyclohexane, in contrast to the ultrafast rate of ESIPT for the parent 2-(2'-hydroxyphenyl)benzothiazole (>2.9+/-0.3 x 10(13) s(-1)), HABT undergoes a relatively slow rate (approximately 5.4+/-0.5 x 10(11) s(-1)) of ESIPT. In polar aprotic solvents competitive rate of proton transfer and rate of solvent relaxation were resolved in the early dynamics. After reaching the solvation equilibrium in the normal excited state (N(eq)*), ESIPT takes place with an appreciable barrier. The results also show N(eq)*(enol)<-->T(eq)*(keto) equilibrium, which shifts toward N(eq)* as the solvent polarity increases. Temperature-dependent relaxation dynamics further resolved a solvent-induced barrier of 2.12 kcal mol(-1) for the forward reaction in CH(2)Cl(2). The observed spectroscopy and dynamics are rationalized by a significant difference in dipole moment between N(eq)* and T(eq)*, while the dipolar vector for the enol form in the ground state (N) is in between that of N(eq)* and T(eq)*. Upon N-->N* Franck-Condon excitation, ESIPT is energetically favorable, and its rate is competitive with the solvation relaxation process. Upon reaching equilibrium configurations N(eq)* and T(eq)*, forward and/or backward ESIPT takes place with an appreciable solvent polarity induced barrier due to differences in polarization equilibrium between N(eq)* and T(eq)*.  相似文献   

9.
It is well known that the molecular excited state dynamical process plays important roles in designing and developing novel applications. In this work, based on density functional theory and time‐dependent density functional theory methods, we theoretically explored a novel 3‐hydroxythioflavone (3HTF). Through calculating the electrostatic potential surface of the 3HTF structure, we confirm the formation of intramolecular hydrogen bonding O2‐H3···O4. Our theoretically obtained dominating bond lengths and bond angles involved in hydrogen bonds demonstrate that the intramolecular hydrogen bonds should be strengthened in the S1 state. Coupling with the simulated infrared vibrational spectra, we further verify the enhanced hydrogen bonding O2‐H3···O4 in the S1 state. Upon photoexcitation, we found that the charge transfer characteristics around hydrogen bonding moieties play important roles in facilitating the excited state intramolecular proton transfer (ESIPT) process. Via constructing potential energy curves in both S0 and S1 states, we confirm the almost nonbarrier ESIPT reaction should be an ultrafast process that further explains the previous experimental phenomenon. At last, we search the S1‐state transition state (TS) structure along with ESIPT path, based on which we simulate the intrinsic reaction coordinate path that further confirms the ESIPT mechanism. We hope that our theoretical work could guide novel applications based on the 3HTF system in future.  相似文献   

10.
Given the tremendous potential applications of excited state intramolecular proton transfer (ESIPT) systems, ESIPT molecules have received widespread attention. In this work, based on density functional theory (DFT) and time‐dependent DFT (TDDFT) methods, we theoretically study the excited state dynamical behaviors of salicyladazine (SA) molecules. Our simulated results show that the double intramolecular hydrogen bonds of SA are strengthened in the S1 state via exploring bond distances, bond angles, and infrared (IR) vibrational spectra. Exploring the frontier molecular orbitals (MOs), we confirm that charge redistributions indeed have effects on excited state dynamical behaviors. The increased electronic densities on N atoms and the decreased electronic densities on O atoms imply that charge redistribution may trigger the ESPT process. Analyzing the constructed S0‐state and S1‐state potential energy surfaces (PESs), we confirm that only the excited state single proton transfer reaction can occur although SA possesses two intramolecular hydrogen bonds. In this work, we clarify the specific ESIPT mechanism, which may facilitate developing novel applications based on the SA system in future.  相似文献   

11.
《中国化学会会志》2018,65(6):667-673
Adopting density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods, we investigat and present two different excited‐state intramolecular proton transfer (ESIPT) mechanisms of angular‐quinacridone (a‐QD) in both toluene and DMF,theoretically. Comparing the primary structural variations of a‐QD involved in the intramolecular hydrogen bond, we conclude that N1–H2⋯O3 should be strengthened in the S1 state, which may facilitate the ESIPT process. Particularly, in toluene, the S1‐state‐stable a‐QD enol* could not be located because of the non‐barrier ESIPT process. Concomitantly, infrared vibrational spectral analysis further verified the stability of the hydrogen bond. In addition, the role of charge–transfer interaction has been addressed under the frontier molecular orbitals (MOs), which depicts the nature of the electronic excited state and supports the ESIPT reaction. The potential energy curves according to variational N1–H2 coordinate demonstrates that the proton transfer process should occur spontaneously in toluene; however, in DMF, a low potential energy barrier of 0.493 kcal/mol is needed to complete the ESIPT reaction. Although this barrier of 0.493 kcal/mol is too low to make an important impact on the ESIPT reaction, just because of the existence of barrier, ESIPT mechanisms in toluene and DMF are different.  相似文献   

12.
In the present work, three novel phenols (10a,11‐dihydro‐4bH‐indeno[1,2‐b]quinolin‐4‐ol ( 1 ), 5,6‐dihydro‐benzo[c]acridin‐1‐ol ( 2 ), and 5,5,7,7a‐tetrahydro‐4aH‐13‐aza‐benzo[3,4]cyclohepta[1,2‐b]naphthalene‐1‐ol ( 3 )) have been explored theoretically in detail. Using density functional theory (DFT) and time‐dependent DFT (TDDFT) methods, we inquire into the intramolecular hydrogen‐bonding interactions and the excited‐state intramolecular proton transfer (ESIPT) process. Exploring the steady‐state absorption and emission spectra under TDDFT/B3LYP/TZVP theoretical level in acetonitrile solvent, our calculated results demonstrate an experimental phenomenon. Based on analysis of the variations of geometrical parameters and infrared (IR) vibrational spectra, we confirm that O–H?N should be strengthened in the S1 state. Investigating the frontier molecular orbitals (MOs) and the charge density difference (CDD) maps, it can be confirmed that the charge redistribution facilitates the tendency of the ESIPT process for 1 , 2, and 3 systems. By constructing potential energy curves, we confirm that the proton transfer should occur in the S1 state. In particular, the ESIPT for 2 and 3 systems are nonbarrier processes in the S1 state, which confirms that ESIPT should be exothermal spontaneously. This work explains previous experimental results and makes a reasonable assumption about the ESIPT mechanism for 1 , 2 and 3 systems. We sincerely hope our work can facilitate understanding and promoting applications about them in future.  相似文献   

13.
This work reports results of further studies on a new class of excited state intramolecular proton transfer (ESIPT), from phenol OH to adjacent aromatic carbon atoms of suitably designed biphenyl systems. For this purpose, a number of 2-phenylphenols 36 with methyl and methoxy substituents on the adjacent proton accepting phenyl ring were synthesized. In particular, we were also interested in studying the effect of an acetyl (ketone) substituent on the proton accepting ring (biphenyl 7) and the effect on the photochemistry when the ketone is reduced to alcohol (biphenyl 8). All compounds except for 7 were found to undergo deuterium exchange (Фex = 0.019–0.079) primarily at the 2′-position on photolysis in 1:3 D2O–CH3CN. This is consistent with a reaction mechanism involving initial ESIPT from the phenol OH to the 2′-position of the adjacent phenyl ring, to generate a biphenyl quinone methide intermediate which rapidly tautomerizes back to starting material. Biphenyl 8 also undergoes a competing photosolvolysis reaction (overall loss of water). Both photosolvolysis and ESIPT reactions react via isomeric quinone methide intermediates and are best interpreted as arising from an excited singlet state that possesses a large degree of charge transfer character, from the phenol ring to the attached phenyl ring. The failure of 7 to react may be due to two possible reasons: (i) high intersystem crossing rate to a non-polarized triplet excited state and/or (ii) a polarized singlet state that is now much more basic at the carbonyl oxygen. The results are consistent with qualitative examination of calculated HOMOs and LUMOs (AM1).  相似文献   

14.
Evidence is presented that show p-hydroxyphenyl ketones 6–8 undergo excited state intramolecular proton transfer (ESIPT, via the singlet excited state), mediated by water, which formally transfers the phenol proton to the carbonyl oxygen of the ketone. ESIPT was not observed in neat CH3CN. The ESIPT process in aqueous media generates the corresponding p-quinone methides 9–11 (and the corresponding conjugate bases (phenolate ions) 12–14), as detected by laser flash photolysis (LFP). It competes effectively with intersystem crossing to the excited triplet state. The respective p-methoxyphenyl ketones 15 and 16 failed to undergo the reaction consistent with the expected lack of proton transfer in these systems. Results for the biphenyl ketone 8 indicate that formal ESIPT can also take place over an extended range, suggesting that the process is likely general for all p-hydroxyaromatic ketones which opens up the possibility for designing photoswitchable processes based on this general phenomenon.  相似文献   

15.
A novel pH-sensitive fluorescent probe T2(OH)B was selected to theoretically investigate its excited state hydrogen bonding effects and excited state intramolecular proton transfer (ESIPT) process. First, it was verified that one intramolecular hydrogen bond is formed spontaneously in T2(OH)B itself. Given the geometrical changes, we further confirm that the hydrogen bond should be strengthened in the first excited state. When it comes to the photoexcitation process, we present the charge redistribution around hydrogen bonding moieties facilitate the ESIPT tendency. The increased electronic densities around acceptor promote the attraction of hydrogen protons. The potential energy barrier in the constructed potential energy curves reveals that the ESIPT process of the T2(OH)B system should be ultrafast. And comparing several nonpolar solvents, we deem solvent polarity plays little role in the ESIPT reaction. Furthermore, we also search the S1-state transition state structure along with the ESIPT path, based on which we simulate the intrinsic reaction coordinate path. We not only confirm the ESIPT mechanism presented in this work but also clarify the ultrafast excited state process and explain previous experiment. We sincerely hope that our theoretical work could guide novel applications based on the T2(OH)B system in future.  相似文献   

16.
Potential energy (PE) curves for the intramolecular proton transfer in the ground (GSIPT) and excited (ESIPT) states of o-hydroxybenzaldehyde (OHBA) were studied using DFT-B3LYP/6-31G(d) and TD-DFT-B3LYP/6-31G(d) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer in this compound. Excited states PE calculations support the ESIPT process in OHBA. The contour PE diagram and the variation of oscillator strength along the proton transfer co-ordinate support the dual emission in OHBA. Our calculations also support the experimental observations of Nagaoka et al. [S. Nagaoka, U. Nagashima, N. Ohta, M. Fujita, T. Takemura, J. Phys. Chem. 92 (1988) 166], i.e. normal emission of the title compound comes from S(2) state and the red-shifted proton transfer band appears from the S(1) state. ESIPT process has also been explained in terms of HOMO and LUMO electron density of the enol and keto tautomer of OHBA and from the potential energy surfaces.  相似文献   

17.
Excited‐state intramolecular proton transfer (ESIPT) of four imidazole derivatives, 2‐(2′‐hydroxyphenyl)imidazole (HPI), 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI), 2‐(2′‐hydroxyphenyl)‐1H‐phenanthro[9,10‐d]imidazole (HPPI) and 2‐(2′‐hydroxyphenyl)‐1‐phenyl‐1H‐phenanthro[9,10‐d]imidazole (HPPPI), were studied by the sophisticated CASSCF/CASPT2 methodology. The state‐averaged SA‐CASSCF method was used to optimize their geometry structures of S0 and S1 electronic states, and the CASPT2 calculations were used for the calibration of all the single‐point energies, including the absorption and emission spectra. A reasonable agreement is found between the theoretical predictions and the available experimental spectral data. The forward ESIPT barriers of four target compounds gradually decrease with the increase of molecular size. On the basis of the present calculations, it is a plausible speculation that the larger the size, the faster is the ESIPT rate, and eventually, HPPPI molecule can undergo a completely barrierless ESIPT to the more stable S1 keto form. Additionally, taking HPI as a representative example, the radiationless decays connecting the S0 and S1/S0 conical intersection structures were also studied by constructing a linearly interpolated internal coordinate (LIIC) reaction path. The qualitative analysis shows that the LIIC barrier of HPI in the keto form is remarkably lower than that of its enol‐form, indicating that the former has a big advantage over the latter in the nonradiative process. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
通过稳态光谱实验和量子化学计算相结合,研究了黄芩素激发态质子转移耦合电荷转移的反应. 实验和计算中S1态吸收峰的缺失表明S1态是暗态. S1暗态导致在实验中观察不到黄芩素在乙醇溶液中的荧光峰,且固体的荧光峰很弱. 黄芩素分子的前线分子轨道和电荷差异密度表明S1态是电荷转移态,然而S2态是局域激发态. 计算的黄芩素分子的势能曲线在激发态只有一个稳定点,这表明了黄芩素激发态分子内质子转移的过程是一个无能垒的过程.  相似文献   

19.
In this work, density functional theory (DFT) and time‐dependent DFT (TDDFT) methods were used to investigate the excited‐state dynamics of the excited‐state hydrogen‐bonding variations and proton transfer mechanism for a novel white‐light fluorophore 2‐(4‐[dimethylamino]phenyl)‐7‐hyroxy‐6‐(3‐phenylpropanoyl)‐4H‐chromen‐4‐one ( 1 ). The methods we adopted could successfully reproduce the experimental electronic spectra, which shows the appropriateness of the theoretical level in this work. Using molecular electrostatic potential (MEP) as well as the reduced density gradient (RDG) versus the product of the sign of the second largest eigenvalue of the electron density Hessian matrix and electron density (sign[λ2]ρ), we demonstrate that an intramolecular hydrogen bond O1–H2···O3 should be formed spontaneously in the S0 state. By analyzing the chemical structures, infrared vibrational spectra, and hydrogen‐bonding energies, we confirm that O1–H2·O3 should be strengthened in the S1 state, which reveals the possibility of an excited‐state intramolecular proton transfer (ESIPT) process. On investigating the excitation process, we find the S0 → S1 transition corresponding to the charge transfer, which provides the driving force for ESIPT. By constructing the potential energy curves, we show that the ESIPT reaction results in a dynamic equilibrium in the S1 state between the forward and backward processes, which facilitates the emission of white light.  相似文献   

20.
The effects of molecular size, conjugation length, and competition with excimer formation on excited state intramolecular proton transfer (ESIPT) in conjugated polymers, in which the intramolecularly hydrogen-bonded moieties reside in the main chain, were examined. A large extent of π-electron delocalization is found to inhibit the ESIPT process. Excimer formation is found to be competitive with ESIPT in the polymers studied, whereas molecular size does not inhibit ESIPT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号