首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The origin of hydroxyl group tolerance in neutral and especially cationic molybdenum imido alkylidene N‐heterocyclic carbene (NHC) complexes has been investigated. A wide range of catalysts was prepared and tested. Most cationic complexes can be handled in air without difficulty and display an unprecedented stability towards water and alcohols. NHC complexes were successfully used with substrates containing the hydroxyl functionality in acyclic diene metathesis polymerization, homo‐, cross and ring‐opening cross metathesis reactions. The catalysts remain active even in 2‐PrOH and are applicable in ring‐opening metathesis polymerization and alkene homometathesis using alcohols as solvent. The use of weakly basic bidentate, hemilabile anionic ligands such as triflate or pentafluorobenzoate and weakly basic aromatic imido ligands in combination with a sterically demanding 1,3‐dimesitylimidazol‐2‐ylidene NHC ligand was found essential for reactive and yet robust catalysts.  相似文献   

4.
We synthesized the first N‐heterocyclic carbene (NHC) complexes of Schrock’s molybdenum imido alkylidene bis(triflate) complexes. Unlike existing bis(triflate) complexes, the novel 16‐electron complexes represent metathesis active, functional‐group‐tolerant catalysts. Single‐crystal X‐ray structures of two representatives of this novel class of Schrock catalysts are presented and reactivity is discussed in view of their structural peculiarities. In the presence of monomer (substrate), these catalysts form cationic species and can be employed in ring‐closing metathesis (RCM), ring‐opening metathesis polymerization (ROMP), as well as in the cyclopolymerization of α,ω‐diynes. Monomers containing functional groups, which are not tolerated by the existing variations of Schrock’s catalyst, e.g., sec‐amine, hydroxy, and carboxylic acid moieties, can be used. These catalysts therefore hold great promise in both organic and polymer chemistry, where they allow for the use of protic monomers.  相似文献   

5.
The synthesis and single‐crystal X‐ray structures of the novel molybdenum imido alkylidene N‐heterocyclic carbene complexes [Mo(N‐2,6‐Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf)2] ( 3 ), [Mo(N‐2,6‐Me2C6H3)(IMes)(CHCMe2Ph)(OTf)2] ( 4 ), [Mo(N‐2,6‐Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf){OCH(CF3)2}] ( 5 ), [Mo(N‐2,6‐Me2C6H3)(CH3CN)(IMesH2)(CHCMe2Ph)(OTf)]+ BArF? ( 6 ), [Mo(N‐2,6‐Cl2C6H3)(IMesH2)(CHCMe3)(OTf)2] ( 7 ) and [Mo(N‐2,6‐Cl2C6H3)(IMes)(CHCMe3)(OTf)2] ( 8 ) are reported (IMesH2=1,3‐dimesitylimidazolidin‐2‐ylidene, IMes=1,3‐dimesitylimidazolin‐2‐ylidene, BArF?=tetrakis‐[3,5‐bis(trifluoromethyl)phenyl] borate, OTf=CF3SO3?). Also, silica‐immobilized versions I1 and I2 were prepared. Catalysts 3 – 8 , I1 and I2 were used in homo‐, cross‐, and ring‐closing metathesis (RCM) reactions and in the cyclopolymerization of α,ω‐diynes. In the RCM of α,ω‐dienes, in the homometathesis of 1‐alkenes, and in the ethenolysis of cyclooctene, turnover numbers (TONs) up to 100 000, 210 000 and 30 000, respectively, were achieved. With I1 and I2 , virtually Mo‐free products were obtained (<3 ppm Mo). With 1,6‐hepta‐ and 1,7‐octadiynes, catalysts 3 , 4 , and 5 allowed for the regioselective cyclopolymerization of 4,4‐bis(ethoxycarbonyl)‐1,6‐heptadiyne, 4,4‐bis(hydroxymethyl)‐1,6‐heptadiyne, 4,4‐bis[(3,5‐diethoxybenzoyloxy)methyl]‐1,6‐heptadiyne, 4,4,5,5‐tetrakis(ethoxycarbonyl)‐1,7‐octadiyne, and 1,6‐heptadiyne‐4‐carboxylic acid, underlining the high functional‐group tolerance of these novel Group 6 metal alkylidenes.  相似文献   

6.
一氧化氮具有电子给予体和受体的双重性质,在过渡金属配合物中亚硝酰基以线型或弯曲型端基,桥式或面桥式配基配位,很早便引起了结构化学家的注意。这些不同的键合模式影响亚硝酰基的反应能力,它可与亲电试剂如质子酸或路易斯酸反应,也可以与亲核试剂如碳阴离子反应。可以作为氧源与 CO 发生氧化还原反应减少内燃机废气污染,也可以与有机配体发生分子内插入反应,形成新的碳氮  相似文献   

7.
双膦(P^P)和1,2-双齿巯基(S^X)混合与MCl2(M=Co,Ni)反应,得到通式为M(S^X)(P^P)的产物.晶体结构测定表明,配合物Co(bdt)(dppe)(1),Ni(tdt)(dppm)(2)和Ni(tsal)(dppe)(3)中的金属均为SXP2配位的四方平面构型,S,X,P原子分别来自二种双齿配体,各形成四、五或六元螯合配位环.文中总结了结构特征,探讨了基元配合物稳定的原因.  相似文献   

8.
Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ‐donating N‐heterocyclic carbene ligands with weak σ‐donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well‐defined silica‐supported catalysts, [(≡SiO)W(=O)(=CHCMe2Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2Ph)(IMes)+][B(ArF)4?] [IMes=1,3‐bis(2,4,6‐trimethylphenyl)‐imidazol‐2‐ylidene, B(ArF)4=B(3,5‐(CF3)2C6H3)4] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene.  相似文献   

9.
A series of M(II) and M(IV) (M=Mo, W) alkyne adducts employing two 6-methylpyridine-2-thiolate (6-MePyS) ligands was synthesized and investigated towards the nucleophilic attack of PMe3 on the coordinated alkynes. For this approach, 2-butyne (C2Me2), phenylacetylene (HC2Ph), and diphenylacetylene (C2Ph2) were used. For the exploration of an intramolecular attack, but-3-yn-1-ol (HCCCH2CH2OH) was coordinated to the metal centers. A nucleophilic attack of PMe3 was observed in [W(CO)(HC2Ph)(6-MePyS)2] yielding an η2-vinyl compound. Reaction of [W(CO)(C2Ph2)(6-MePyS)2] with excess PMe3 resulted in the selective coordination of one molecule of PMe3 concomitant with decoordination of the nitrogen atom of one 6-MePyS ligand. In contrast, the W(IV) complexes did not react with PMe3. While no selectivity was observed in the reaction of the Mo(II) compounds with PMe3, alkynes in the Mo(IV) compounds were replaced by PMe3. Addition of Et3N to the but-3-yn-1-ol complexes did not lead to the anticipated formation of 2,3-dihydrofuran.  相似文献   

10.
Grafting Ti(=NtBu)(Me2Pyr)2(py)2 (Me2Pyr= 2,5‐dimethylpyrrolyl, py=pyridine) onto the surface of silica partially dehydroxylated at 700 °C gives the well‐defined silica‐supported Ti imido complex (≡SiO)Ti(=NtBu)(Me2Pyr)(py)2, which is fully characterized by IR and solid‐state NMR spectroscopy as well as elemental and mass balance analyses. While stoichiometric imido‐transfer reactivity is typical for Ti imides, the obtained surface complex is unique in that it enables catalytic transformations involving Ti imido and oxo intermediates. In particular, it efficiently catalyzes imidation of carbonyl compounds with N‐sulfinylamines by oxo/imido heterometathesis.  相似文献   

11.
钼、钨系过氧化物是非常重要的Sharpless烯烃环氧化催化剂,有着非常广泛的工业发展前景。本文综述了钼、钨系过氧化物的种类,结构,合成方法及催化活性,分析了各种钼、钨系过氧化物的特点以及在催化环氧化领域的发展现状。同时,本文还讨论了钼、钨系过氧化物催化烯烃环氧化反应的机理。评述了在催化环氧化领域中两种主要理论——Mimoun机理与Sharpless机理的争论焦点及发展现状,以及计算化学对两种理论中间过渡态的研究进展,并且重点分析了Sharpless机理的过渡态结构。此外,本文还综述了影响钼、钨系过氧化物催化剂反应活性的各种因素以及质子所产生的副反应。最后,本文对应用于催化环氧化领域的钼、钨系过氧化物未来的研究方向提出了建议。  相似文献   

12.
We present the synthesis and characterization of disila‐ and distanna ansa half‐sandwich complexes of Group 6 transition metals. These compounds exhibit high ring strain within the ansa bridge, which is the key factor for the insertion of elemental chalcogens.  相似文献   

13.
Interconversion of the molybdenum amido [(PhTpy)(PPh2Me)2Mo(NHtBuAr)][BArF24] (PhTpy=4′‐Ph‐2,2′,6′,2“‐terpyridine; tBuAr=4‐tert‐butyl‐C6H4; ArF24=(C6H3‐3,5‐(CF3)2)4) and imido [(PhTpy)(PPh2Me)2Mo(NtBuAr)][BArF24] complexes has been accomplished by proton‐coupled electron transfer. The 2,4,6‐tri‐tert‐butylphenoxyl radical was used as an oxidant and the non‐classical ammine complex [(PhTpy)(PPh2Me)2Mo(NH3)][BArF24] as the reductant. The N?H bond dissociation free energy (BDFE) of the amido N?H bond formed and cleaved in the sequence was experimentally bracketed between 45.8 and 52.3 kcal mol?1, in agreement with a DFT‐computed value of 48 kcal mol?1. The N?H BDFE in combination with electrochemical data eliminate proton transfer as the first step in the N?H bond‐forming sequence and favor initial electron transfer or concerted pathways.  相似文献   

14.
15.
加权最小二乘光度法同时测定钨和钼   总被引:5,自引:3,他引:5  
痕量钨和钼与芦丁在混合表面活生剂(CTMAB+Brij-35)存在下,于pH5.4HAC-NaAc介质中产生灵敏的显色反应,所形成的胶束配合物的吸收峰严重重叠。用加权最小二乘法成功地同时测定了混合样中的两组分。  相似文献   

16.
[Fe]‐hydrogenase has a single iron‐containing active site that features an acylmethylpyridinol ligand. This unique ligand environment had yet to be reproduced in synthetic models; however the synthesis and reactivity of a new class of small molecule mimics of [Fe]‐hydrogenase in which a mono‐iron center is ligated by an acylmethylpyridinol ligand has now been achieved. Key to the preparation of these model compounds is the successful C?O cleavage of an alkyl ether moiety to form the desired pyridinol ligand. Reaction of solvated complex [(2‐CH2CO‐6‐HOC5H3N)Fe(CO)2(CH3CN)2]+(BF4)? with thiols or thiophenols in the presence of NEt3 yielded 5‐coordinate iron thiolate complexes. Further derivation produced complexes [(2‐CH2CO‐6‐HOC5H3N)Fe(CO)2(SCH2CH2OH)] and [(2‐CH2CO‐6‐HOC5H3N)Fe(CO)2(CH3COO)], which can be regarded as models of FeGP cofactors of [Fe]‐hydrogenase extracted by 2‐mercaptoethanol and acetic acid, respectively. When the derivative complexes were treated with HBF4?Et2O, the solvated complex was regenerated by protonation of the thiolate ligands. The reactivity of several models with CO, isocyanide, cyanide, and H2 was also investigated.  相似文献   

17.
New clustomesogens (i.e., metal atom clusters containing liquid crystalline (LC) materials) have been obtained by grafting neutral cyanobiphenyl (CB)‐ or cholesteryl‐containing tailor‐made dendritic mesomorphic triphenylphosphine oxide ligands on luminescent (M6Cli8)4+ octahedral cluster cores (M=Mo, W). The LC properties were studied by a combination of polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and X‐ray powder diffraction analyses. While the organic ligands showed various mesophase types ranging from nematic, SmA columnar (SmACol), SmA, and SmC phases, it turned out that the corresponding clustomesogens formed layered phases (SmA) over a wide range of temperatures that depend on the nature and density of mesogenic groups employed. Intrinsic luminescence properties of the cluster precursors are preserved over the entire range of LC phase existence.  相似文献   

18.
闵涛  史旭东  鲁晓明 《结构化学》2012,31(2):191-198
Two complexes [H3N(CH2)2NH2]2[MoO2(C10H8O2)2] (1) and (C7H10N2)2- [MoO2(C10H8O2)2] (2) were obtained at nearly the same reaction condition and characterized by IR, 1H and 13C NMR and single-crystal X-ray diffraction. Both of the complexes possess complex anion [MoO2(C10H8O2)2]2- which shows a pseudo-octahedrally coordinated fashion. In complex 1, ethyldiamine presents just as a cation. However, in complex 2, ethyldiamine combines with the acetyl acetone as a byproduct which is confirmed by NMR.  相似文献   

19.
针对钨矿石中的微量元素磷,采用混合酸快速微波消解结合磷钼蓝分光光度法进行测定。经选择优化样品的微波消解和实验测定条件,结果表明:HCl+HNO3+HF的混合酸微波消解后的样品,在硫酸介质中,有钼酸铵存在时,用抗坏血酸将磷还原成磷钼蓝络合物,在825nm处比色测定。方法的加标回收率为98.9%~101.6%,结果准确可靠。硅在熔样过程中挥发除去不会干扰测定,砷会干扰实验,可在酸介质中加入碘化钾,使砷还原至低价而不干扰磷的测定。  相似文献   

20.
The origin of hydroxyl group tolerance in neutral and especially cationic molybdenum imido alkylidene N-heterocyclic carbene (NHC) complexes has been investigated. A wide range of catalysts was prepared and tested. Most cationic complexes can be handled in air without difficulty and display an unprecedented stability towards water and alcohols. NHC complexes were successfully used with substrates containing the hydroxyl functionality in acyclic diene metathesis polymerization, homo-, cross and ring-opening cross metathesis reactions. The catalysts remain active even in 2-PrOH and are applicable in ring-opening metathesis polymerization and alkene homometathesis using alcohols as solvent. The use of weakly basic bidentate, hemilabile anionic ligands such as triflate or pentafluorobenzoate and weakly basic aromatic imido ligands in combination with a sterically demanding 1,3-dimesitylimidazol-2-ylidene NHC ligand was found essential for reactive and yet robust catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号