首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium(II) extraction from hydrochloric acid solutions with a novel weakly basic complexing reagent, 4-[(hexylsulfanyl)methyl]-3,5-dimethyl-1H-pyrazole, dissolved in chloroform was studied. Palladium(II) was found to be highly efficiently extracted from 0.1–3 mol/L HCl solutions. A coordination mechanism of palladium(II) extraction with a protonated form of the reagent via fast interphase transfer of ion associates was proposed. The composition of the extracted compound, [PdCl2μ-L]n (n > 2), was found, and the way of coordination of the reagent to metal ions through N(2) nitrogen atom and thioether sulfur atom was determined. The reagent can be recommended for concentrating palladium(II) and selectively separating it from platinum(IV), copper(II), nickel(II), and iron(III).  相似文献   

2.
A coprecipitation method has been developed for the determination of Cr(III), Mn(II), Fe(III), Co(II), Cu(II), Cd(II) and Pb(II) ions in aqueous samples by flame atomic absorption spectrometry (FAAS) with the combination of pyridine, nickel(II) as a carrier element and potassium thiocyanate as an auxiliary complexing agent. The obtained coprecipitates were dissolved with nitric acid and measured by FAAS. The coprecipitation conditions, such as the effect of the pH, amounts of nickel, pyridine and potassium thiocyanate, sample volume, and the standing time of the precipitate formation were examined in detail. It was found that the metal ions studied were quantitatively coprecipitated with tetrakis(pyridine)-nickel(II)bis(thiocyanate) precipitate (TP-Ni-BT) in the pH range of 9.0 - 10.5. The reliability of the results was evaluated by recovery tests, using synthetic seawater solutions spiked with the analyte metal ions. The obtained recoveries ranged from 96 to 101% for all of the metal ions investigated. The proposed method was validated by analyses of two certified reference materials (NIST SRM 2711 Montana soil and HPS Certified Waste Water Trace Metals Lot #D532205). It was also successfully applied to seawater and dialysis solution samples. The detection limits (n = 25, 3s) were in the range of 0.01-2.44 microg l(-1) for the studied elements and the relative standard deviations were < or =6%, which indicated that this method could fully satisfy the requirements for analysis of such samples as seawater and dialysis solution having high salt contents.  相似文献   

3.
Chemically doped sol-gel silica has been developed by entrapping organic dye cibacron blue as a complexing reagent in porous silica prepared by the sol-gel method for removal of metal ions from water samples. In the doped sol-gel silica, the large reagent molecules are entrapped inside the pores while small metal ions can diffuse into the pores where they are complexed by the reagent and retained inside the pores. This new solid sorbent was tested for removal of Zn(II) from aqueous solutions. The kinetics, isotherm, and pH effect of the removal were investigated. With a loading of 0.10 mmol cibacron blue/g, the sol-gel silica sorbent had a capacity of 0.09 mmol Zn/g. It was demonstrated that the sol-gel silica sorbent could be regenerated and reused repeatedly.  相似文献   

4.
Ihara K  Hasegawa S  Naito K 《Talanta》2008,75(4):944-949
The membrane filtration was examined as an effective and selective method for collection of Al(III) ions from aqueous solutions using Alizarin Yellow R, one of a pH-indicator, as a precipitating reagent. For preparation of aqueous solutions without precipitate or turbidity, a non-ionic surfactant, Triton X-100, was used as a solubilizing reagent for insoluble materials. Three metal ions, Al(III), V(III) and Cu(II) ions, were able to be collected as yellow-orange precipitates from aqueous solutions controlled in a range of pH 4-7, pH 4-9, and pH 5.5-12, respectively, on a membrane filter by filtration under suction. Hydrogen peroxide and o-phenanthroline were found to be capable of masking V(III) and Cu(II) ions in a range of pH 5.5-8 in which Al(III) ions were collected. This membrane filtration was applied to selective separation and determination of Al(III) ions in tap water.  相似文献   

5.
Lucifer yellow CH is shown to be a highly selective fluorescent reagent for the determination of Cu(III) in the microg L(-1) concentration range. The fluorophore is statically quenched by Cu(II); the carbohydrazide group was assigned as the complexing part of the dye molecule. A total range of Cu(II) determination from 0.06 mg L(-1) (1 micromol L(-1)) to 6.3 mg L(-2) (100 micromol L(-1)) with a limit of detection of 0.019 mg L(-1) (0.3 micromol L(-1)) was obtained, along with surprisingly high selectivity. There was no interference from alkaline and earth alkaline metal ions. The cross sensitivity to heavy metal ions was evaluated by the separate solution method and by competitive binding experiments. Calibration plots are shown for Cu(II) determination at different pH and the dissociation constant was determined. The application of the reagent was demonstrated by the determination of the Cu(II) content of tap water samples.  相似文献   

6.
A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.  相似文献   

7.
Teshima N  Itabashi H  Kawashima T 《Talanta》1993,40(1):101-106
A redox reaction of copper(II) with iron(II) proceeds slowly in the presence of neocuproine, although the reaction would not take place in its absence. This reaction is accelerated by the presence of complexing agents such as EDTA, DTPA, CyDTA, EDTA-OH, NTA, citrate, pyrophosphate, producing a copper(I)-neocuproine complex (lambda(max) = 454 nm). A reverse flow injection analysis (r-FIA) method is presented for the determination of trace amounts of complexing agents by measuring the increase in absorbance at 454 nm. Complexing agents at the 10(-6)M level can be determined at a rate of 120 samples/hr. By using this r-FIA system, a new procedure for the measurement of complexing capacity with metal ions such as Al(III), Cu(II), Zn(II), Cd(II) and Pb(II) has been developed. Complexing capacity for each metal ion can be measured at a rate of 120 samples/hr.  相似文献   

8.
Krishnamurti GS  Huang PM 《Talanta》1990,37(7):745-748
A spectrophotometric method for the determination of Fe(II) in the presence of large amounts (up to 800 mg/l.) of Fe(III) is suggested. The Fe(III) is effectively masked by complexing with fluoride at pH 2.0-2.4 before development of the violet Fe(II) complex with 2,4,6-tri(2'-pyridyl)-1,3,5-triazine. The absorbance is measured at 595 nm. Various commonly occurring ions which complex with Fe(II) and/or Fe(III) do not interfere.  相似文献   

9.
A sorbent extraction procedure for Pb(II), Cu(II), Ni(II), and Fe(III) ions on single-walled carbon nanotube disks has been established. Analyte ions were converted to 2-(5-bromo-2-pyridylazo)-5-diethylamino-phenol chelates, then adsorbed on the disk. Adsorbed chelates were easily desorbed from the disk by using 10 mL 2 M HNO3. The various analytical parameters, including pH and reagent amounts that were effective for the recoveries of the analytes on nanotube disks, were optimized. The influence of matrix ions was also studied. The LOD values based on 3sigma were in the 0.3-4.6 microg/L range. Validation of the proposed SPE procedure was carried out by the determination of analytes in certified reference materials (TMDA-54.4 fortified lake water and HR-1 Humber River sediment). Spiking and recovery experiments for the analyte ions in real samples gave good results. Application of the procedure was illustrated by the determination of analyte contents in some animal feeds and water samples from Turkey.  相似文献   

10.
A chelating agent-loaded resin consisting of 8-quinolinol-5-sulfonic acid and an anion-exchange resin (HOx-resin) was prepared in order to concentrate trace chalcophile elements in natural water samples selectively before neutron activation analysis. The exchange capacity of the Diaion SA No. 100 for the reagent (1.8 meq . g-1 resin) corresponds approximately to that for chloride ion (1.83 meq . g-1 resin), indicating that 8-quinolinol-5-sulfonic acid is adsorbed quantitatively on the exchange site of the resin through the sulfonate anion in the reagent. The basic conditions for the adsorption of the metal ions on the resin were investigated by employing the column method. The nitrate concentration and the pH of the sample solution affect the adsorption behavior of metal ions. Several solutions containing metal ions with varying pH or varying nitrate concentration were applied to the resin column (35 mm x 7 mm phi) with a flow rate of 2.0 cm3 . min-1. As a result, the optimum conditions for the quantitative adsorption of copper(II), zinc(II), cadmium(II), cobalt(II), nickel(II) and manganese(II) were as follows: NO3- less than 0.01 mol . dm-3 pH greater than 4.6. Furthermore, the feasibility of the above conditions as well as quantitative adsorption of the chalcophile elements was confirmed through the neutron activation analysis of the synthesized metal solutions.  相似文献   

11.
The extraction of trace amounts of mercury(II) by 2-hexylpyridine dissolved in benzene from aqueous mineral acid solutions has been studied. The replacement of chloride, nitrate and sulfate ions by the potentially ambidentate, linear and less basic thiocyanate group offers interestingly high extraction coefficients. The value of the distribution coefficients may be lowered by complexing mercury with oxalate, thiosulfate, acetate or citrate ions in the aqueous phase. The possible mechanism of extraction has been discussed in the light of the results of extraction isotherms and slope analysis data. Distribution coefficients and separation factors of several metal ions relative to mercury(II) are reported for the three mineral acid systems and the possible removal of mercury along with some other inorganic pollutants from aqueous solutions is suggested.  相似文献   

12.
Preconcentration and separation with solvent extraction of Cu(II) from aqueous solution using N,N′-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane (H2L) as the new extractant has been studied. Separation of Cu(II) from other metal ions such as Cd(II), Ni(II), Zn(II), Pb(II), Cr(III), Co(II) and Mn(II) at aqueous solutions of various pH values and complexing agent H2L, has been described. The possible extraction mechanism and the compositions of the extracted species have been determined. The separation factors for these metals using this reagent are reported while efficient methods for the separation of Cu(II) from other metal ions are proposed. From the loaded organic phase, Cu(II) stripping was carried out in one stage with different mineral acid solutions. The stripping efficiency was found to be quantitative in case of HNO3 and HCl. From quantitative evaluation of the extraction equilibrium data, it has been deduced that the complex extracted is the simple 1:1 chelate, CuL. The extraction constant has a value of logKex=−4.05±0.04.  相似文献   

13.
The assessment of free Cu(II), Pb(II) and Cd(II) ions in the presence of complexed species was realised by a circulating dialysis with Cuprophan planar membranes and subsequent quantification by flame atomic absorption spectrometry. The effect of the flow rate, the time of equilibration, pH and the presence of various complexing agents in the donor solutions were studied. The determination of free Cu(II), Pb(II) and Cd(II) ions in the presence of soil humic substances resulted from the above studies.  相似文献   

14.
The assessment of free Cu(II), Pb(II) and Cd(II) ions in the presence of complexed species was realised by a circulating dialysis with Cuprophan planar membranes and subsequent quantification by flame atomic absorption spectrometry. The effect of the flow rate, the time of equilibration, pH and the presence of various complexing agents in the donor solutions were studied. The determination of free Cu(II), Pb(II) and Cd(II) ions in the presence of soil humic substances resulted from the above studies.  相似文献   

15.
Khuhawar MY  Lanjwani SN 《Talanta》1998,46(4):485-490
The complexing reagent 2-thiophenaldehyde-4-phenyl-3-thiosemicarbazone (TAPT) was examined for high performance liquid chromatographic (HPLC) separations of cobalt(II), copper(II) and iron(II) or cobalt(II), nickel(II), iron(II), copper(II) and mercury(II) as metal chelates on a Microsorb C-18, 5-mum column (150x4.6 mm i.d.) (Rainin Instruments Woburn, MA, USA). The complexes were eluted isocratically with methanol:acetonitrile:water containing sodium acetate and tetrabutyl ammonium bromide (TBA). UV detection was at 254 nm. The solvent extraction procedure was developed for simultaneous determination of the metals, with detection limits within 0.5-2.5 mug ml(-1) in the final solution. The method was applied for the determination of copper, cobalt and iron in pharmaceutical preparation.  相似文献   

16.
A new highly sensitive and selective chromogenic reagent, p-carboxyphenylfluorone (p-CPF), was studied for spectrophotometric determination of trace molybdenum. In 0.36 mol L(-1)phosphoric acid medium, p-CPF reacts with molybdenum(VI) to form a 1:3 red complex, which has a sensitive absorption peak at 531 nm. Under optimal conditions, the reaction of molybdenum(VI) with p-CPF completed rapidly and absorbance remains almost constant for at least 24 h. Molybdenum(VI) obeyed Beer's law in the range 0-2.0 microg mL(-1); the apparent molar absorption coefficient, Sandell's sensitivity and the limit of detection were found to be 1.03 x 10(5) L mol(-1) cm(-1), 1.028 ng cm(-2)and 0.73 ng mL(-1) respectively; the effect of various foreign ions were examined in detail. It was found that most coexisting ions can be tolerated in considerable amounts, especially 800 mg of Mn(II), 200 mg of Mg(II), Fe(II), Co(III), Ni(II) and Cd(II), 50 mg of Ca(II) and Al(III), 25 mg of Cu(II) and Fe(III), 10 mg of Hg (II), La(III), Bi(III), Pb(II) and Zn(II) don't interfere with the determination of molybdenum(VI). The proposed method is very simple, sensitive and selective, it has been applied to determine molybdenum in vegetable and food samples with a very high precision and accuracy. Moreover, the synthesis of the reagent and the conditions of the colour reaction were also studied in detail.  相似文献   

17.
A simple, rapid and inexpensive method for separation and preconcentration of some traces of hazardous elements is presented prior to their flame atomic absorption spectrometric determinations. At pH 6.5; cadmium(II), cobalt(II) and lead(II) were separated simultaneously with 1,2‐bis((1H‐benzo[d]imidazol2‐yl)methoxy)benzene (BBIMB) as a new complexing agent and floated after adding sodium dodecyl sulfate (SDS) as a foaming reagent. The floated layer was then eluted by concentrated nitric acid in methanol and introduced to the flame atomic absorption spectrometer (FAAS). The effects of pH, concentration of BBIMB, type and amount of surfactant as the floating agent, type and amount of eluting agent and influence of foreign ions on the recoveries of the analyte ions were investigated. Also, by using a non‐linear curve fitting method the formation constants of Cd(II), Co(II) and Pb(II) complexes were obtained 1.02 × 106, 1.17 × 106 and 1.46 × 106, respectively. The detection limits of Cd(II), Co(II) and Pb(II) ions were 1.2, 0.7 and 0.5 μg/L, respectively. The enrichment factors were 45.0, 42.0 and 39.0 for Cd(II), Co(II) and Pb(II) ions, respectively. The proposed procedure was then successfully applied for determination of those heavy metals in colored human hair and dryer agents of paint samples.  相似文献   

18.
Main MV  Fritz JS 《Talanta》1991,38(3):253-258
A new thiosemicarbazone was prepared, characterized, and used as a complexing reagent for the chromatographic separation and determination of metal complexes by reverse-phase HPLC. The reagent was sufficiently soluble in methanol-water solutions for metal ions to be complexed in this aqueous organic phase, without need for extraction. Many variables affected the retention times of the metal complexes. Several metals were determined selectively by complexation with the reagent and chromatographic separation of the complexes. Interference effects from other metal ions were also investigated.  相似文献   

19.
Dev K  Pathak R  Rao GN 《Talanta》1999,48(3):579-584
The complexing properties (capacity, pH effect, breakthrough curve) of a chelating resin, containing bicine ligands, were investigated for La(III), Nd(III), Tb(III), Th(IV) and U(VI). Trace amounts of these metal ions were quantitatively retained on the resin and recovered by eluting with 1 M hydrochloric acid. The capacity of the resin for La(III), Nd(III), Tb(III), Th(IV) and U(VI) was found to be 0.35, 0.40, 0.42, 0.25 and 0.38 mmol g(-1), respectively. Separation of U(VI) and Th(IV) from Ni(II), Zn(II), Co(II) and Cu(II) in a synthetic solution was carried out.  相似文献   

20.
HPLC was coupled with sequential injection (SI) for simultaneous analyses of some heavy metals, including Co(II), Ni(II), Cu(II), and Fe(II). 2-(5-Nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) was employed as a derivatizing reagent for sensitive spectrophotometric detection by online precolumn derivatization. The SI system offers an automated handling of sample and reagent, online precolumn derivatization, and propulsion of derivatives to the HPLC injection loop. The metal-nitro-PAPS complexes were separated on a C(18)-muBondapak column (3.9x300 mm(2)). Using the proposed SI-HPLC system, determination of four metal ions by means of nitro-PAPS complexes was achieved within 13 min in which the parallel of derivatization and separation were processed at the same time. Linear calibration graphs were obtained in the ranges of 0.005-0.250 mg/L for Cu(II), 0.007-1.000 mg/L for Co(II), 0.005-0.075 mg/L for Ni(II), and 0.005-0.100 mg/L for Fe(II). The system provides means for automation with good precision and minimizing error in solution handling with the RSD of less than 6%. The detection limits obtained were 2 microg/L for Cu(II) and Co(II), and 1 microg/L for Ni(II) and Fe(II). The method was successfully applied for the determination of metal ions in various samples, including milk powder for infant, mineral supplements, local wines, and drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号