首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TLC densitometric and RP-HPLC methods are innovative chromatographic methods used for determination of diloxanide furoate, metronidazole and its impurity, 4-nitroimidazole. In the developed TLC densitometric method, appropriate separation was achieved using silica gel 60 F254 TLC plates and ethyl acetate/acetone/hexane/ammonia solution (9.5:0.5:0.3:0.3, by volume), as a developing system and the separated bands were UV-scanned at 276 nm. While the developed RP-HPLC method depended on separation of components on C8 column using deionized water containing 0.05 % TEA: methanol (40:60, v/v) as a mobile phase at constant flow rate of 1 mL/min with UV detection at 276 nm. Variables affecting performance of the developed methods were studied and optimized. Regression analysis showed acceptable correlation coefficients in the selected ranges with excellent percentage recoveries. The methods showed no significant interferences from dosage form excipients, and the validity of the proposed methods was further assessed by applying standard addition technique. In addition, results obtained by applying the proposed methods were statistically compared to those obtained by applying the reported method and no significant difference was found between them. The suggested methods were successfully applied for the determination of the cited drugs in bulk powder, laboratory prepared mixtures and commercial tablets.  相似文献   

2.
Three stability-indicating assay methods were developed for the determination of tropisetron in a pharmaceutical dosage form in the presence of its degradation products. The proposed techniques are HPLC, TLC, and first-derivative spectrophotometry (1D). Acid degradation was carried out, and the degradation products were separated by TLC and identified by IR, NMR, and MS techniques. The HPLC method was based on determination of tropisetron in the presence of its acid-induced degradation product on an RP Nucleosil C18 column using methanol-water-acetonitrile-trimethylamine (65 + 20 + 15 + 0.2, v/v/v/v) mobile phase and UV detection at 285 nm. The TLC method was based on the separation of tropisetron and its acid-induced degradation products, followed by densitometric measurement of the intact spot at 285 nm. The separation was carried out on silica gel 60 F254 aluminum sheets using methanol-glacial acetic acid (22 + 3, v/v) mobile phase. The 1D method was based on the measurement of first-derivative amplitudes of tropisetron in H2O at the zero-crossing point of its acid-induced degradation product at 271.9 nm. Linearity, accuracy, and precision were found to be acceptable over concentration ranges of 40-240 microg/mL, 1-10 microg/spot, and 6-36 micro/mL for the HPLC, TLC, and 1D methods, respectively. The suggested methods were successfully applied for the determination of the drug in bulk powder, laboratory-prepared mixtures, and a commercial sample.  相似文献   

3.
Simple, sensitive and accurate thin layer procedure was described for a quantitative determination of paracetamol in its bulk powder and in its pharmaceutical dosage forms in the presence of its degradation product. The method consists of dissolving the drug in methanol and then spotting the solution on a thin layer of silica gel G254. Paracetamol was separated on silica gel using the mixture of the mobile phase, ethyl acetate: benzene: acetic acid in a ratio (1:1:0.05 v/v/v).Absorbance measurements (detection of reflectance) of the separated drug were carried out at 250 nm. Calibration curves were established in the concentration range of 5–20 mcg/spot for paracetamol. Quantitation is achieved by comparing the area under the peaks obtained from scanning the thin layer chromatographic plates in a spectrodensitometer. The method has been successfully applied to pharmaceutical preparations (capsules) and the results obtained were statistically compared with those obtained by applying the reference method.  相似文献   

4.
Two sensitive and reproducible methods were developed and validated for the determination of ziprasidone (ZIP) in the presence of its degradation products in pure form and in pharmaceutical formulations. The fi rst method was based on reversed-phase high-performance liquid chromatography (HPLC), on a Lichrosorb RP C(18) column using water:acetonitrile:phosphoric acid (76:24:0.5 v/v/v) as the mobile phase at a fl ow rate of 1.5 mL min(-1) at ambient temperature. Quantification was achieved with UV detection at 229 nm over a concentration range of 10-500 micro g mL(-1) with mean percentage recovery of 99.71 +/- 0.55. The method retained its accuracy in presence of up to 90% of ZIP degradation products. The second method was based on TLC separation of ZIP from its degradation products followed by densitometric measurement of the intact drug spot at 247 nm. The separation was carried out on aluminium sheet of silica gel 60 F(254) using choloroform:methanol:glacial acetic acid (75:5:4.5 v/v/v) as the mobile phase, over a concentration range of 1-10 micro g per spot and mean percentage recovery of 99.26 +/- 0.39. Both methods were applied successfully to laboratory prepared mixtures and pharmaceutical capsules.  相似文献   

5.
ABSTRACT: BACKGROUND: A simple, specific, and fast stability indicating reverse phase liquid chromatographic method was established for instantaneous determination of moxifloxacin and prednisolone in bulk drugs and pharmaceutical formulations. RESULTS: Optimum chromatographic separations among the moxifloxacin, prednisolone and stressinduced degradation products were achieved within 10 minutes by use of BDS Hypersil C8 column (250 X 4.6 mm, 5 mum) as stationary phase with mobile phase consisted of a mixture of phosphate buffer (18 mM) containing 0.1% (v/v) triethylamine, at pH 2.8 (adjusted with dilute phosphoric acid) and methanol (38:62 v/v) at a flow rate of 1.5 mL min-1. Detection was performed at 254 nm using diode array detector. The method was validated in accordance with ICH guidelines. Response was a linear function of concentrations over the range of 20-80 mug mL-1 for moxifloxacin (r2 [greater than or equal to] 0.998) and 40-160 mug mL-1 for prednisolone (r2 [greater than or equal to] 0.998). The method was resulted in good separation of both the analytes and degradation products with acceptable tailing and resolution. The peak purity index for both the analytes after all types of stress conditions was [greater than or equal to] 0.9999 indicated a complete separation of both the analyte peaks from degradation products. The method can therefore, be regarded as stabilityindicating. CONCLUSIONS: The developed method can be applied successfully for simultaneous determination of moxifloxacin and prednisolone in pharmaceutical formulations and their stability studies.  相似文献   

6.
Three new, different, simple, sensitive, and accurate methods were developed for quantitative determination of nifuroxazide (I) and drotaverine hydrochloride (II) in a binary mixture. The first method was spectrophotometry, which allowed determination of I in the presence of II using a zero-order spectrum with an analytically useful maximum at 364.5 nm that obeyed Beer's law over a concentration range of 2-10 microg/mL with mean percentage recovery of 100.08 +/- 0.61. Determination of II in presence of I was obtained by second derivative spectrophotometry at 243.6 nm, which obeyed Beer's law over a concentration range of 2-10 microg/mL with mean recovery of 99.82 +/- 1.46%. The second method was spectrodensitometry, with which both drugs were separated on a silica gel plate using chloroform-acetone-methanol-glacial acetic acid (6 + 3 + 0.9 + 0.1) as the mobile phase and ultraviolet (UV) detection at 365 nm over a concentration range of 0.2-1 microg/band for both drugs, with mean recoveries of 99.99 +/- 0.15 and 100.00 +/- 0.34% for I and II, respectively. The third method was reversed-phase liquid chromatography using acetonitrile-water (40 + 60, v/v; adjusted to pH 2.55 with orthophosphoric acid) as the mobile phase and pentoxifylline as the internal standard at a flow rate of 1 mU/min with UV detection at 285 nm at ambient temperature over a concentration range of 2-10 microg/mL for both drugs, with mean recoveries of 100.24 +/- 1.51 and 100.08 +/- 0.78% for I and II, respectively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulations containing the above drugs with no interference from other dosage form additives. The validity of the suggested procedures was further assessed by applying the standard addition technique which was found to be satisfactory, and the percentage recoveries obtained were in accordance with those given by the EVA Pharma reference spectrophotometric method.  相似文献   

7.
A quantitative densitometric thin-layer chromatographic method for determination of nefopam hydrochloride in pharmaceutical preparations has been established and validated. Nefopam from the formulations was separated and identified on silica gel 60 F254 TLC plates with chloroform-methanol-glacial acetic acid (9: 2: 0.1, v/v/v) as mobile phase. Densitometric quantification was performed at absorbance maximum 266 nm. The method was validated for linearity, sensitivity, precision and recovery in accordance with ICH guidelines. The presented method is selective and specific with potential application in pharmaceutical analysis. Nefopam hydrochloride was subjected to acidic and alkaline hydrolysis at different temperatures. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating one.  相似文献   

8.
A new, simple, accurate and precise high‐performance thin‐layer chromatographic method has been developed and validated for simultaneous determination of an anthelmintic drug, albendazole, and its active metabolite albendazole, sulfoxide. Planar chromatographic separation was performed on aluminum‐backed layer of silica gel 60G F254 using a mixture of toluene–acetonitrile–glacial acetic acid (7.0:2.9:0.1, v /v/v) as the mobile phase. For quantitation, the separated spots were scanned densitometrically at 225 nm. The retention factors (R f) obtained under the established conditions were 0.76 ± 0.01 and 0.50 ± 0.01 and the regression plots were linear (r 2 ≥ 0.9997) in the concentration ranges 50–350 and 100–700 ng/band for albendazole and albendazole sulfoxide, respectively. The method was validated for linearity, specificity, accuracy (recovery) and precision, repeatability, stability and robustness. The limit of detection and limit of quantitation found were 9.84 and 29.81 ng/band for albendazole and 21.60 and 65.45 ng/band for albendazole sulfoxide, respectively. For plasma samples, solid‐phase extraction of analytes yielded mean extraction recoveries of 87.59 and 87.13% for albendazole and albendazole sulfoxide, respectively. The method was successfully applied for the analysis of albendazole in pharmaceutical formulations with accuracy ≥99.32%.  相似文献   

9.
A densitometric high performance thin-layer chromatography (HPTLC) method was developed and validated for the quantitative analysis of haloperidol in tablets. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone/chloroform/n-butanol/acetic acid glacial/water (5:10:10:2.5:2.5 v/v/v/v/v) as the mobile phase. Quantitative analysis was carried out at a wavelength of 254 nm. The method was linear in the 10-100 ng/microL range, with a determination coefficient of 0.999. The coefficients of variation for precision were not higher than 2.35%. The detection limit was 0.89 ng/microL, and the quantification limit was 2.71 ng/microL. The accuracy ranged from 97.76 to 100.33%, with a CV not higher than 4.50%. This method was successfully applied to quantify haloperidol in real pharmaceutical samples, including the comparison with HPLC measurements. The method was fast, specific, with a good precision and accuracy for the quantitative determination of haloperidol in tablets.  相似文献   

10.
Hegazy  Maha A.  Yehia  Ali M.  Mostafa  Azza A. 《Chromatographia》2011,74(11):839-845

Simple, sensitive, selective, precise, and stability-indicating thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) methods for the determination of mosapride and pantoprazole in pharmaceutical tablets were developed and validated as per the International Conference on Harmonization guidelines. The TLC method employs aluminum TLC plates precoated with silica gel 60F254 as the stationary phase and ethyl acetate/methanol/toluene (4:1:2, v/v/v) as the mobile phase to give compact spots for mosapride (R f 0.73) and pantoprazole (R f 0.45) separated from their degradation products; the chromatogram was scanned at 276 nm. The HPLC method utilizes a C18 column and a mobile phase consisting of acetonitrile/methanol/20 mM ammonium acetate (4:2:4, v/v/v) at a flow rate of 1.0 mL min−1 for the separation of mosapride (t R 11.4) and pantoprazole (t R 4.4) from their degradation products. Quantitation was achieved with UV detection at 280 nm. The same HPLC method was successfully used in performing calibrations in lower concentration ranges for both drugs in human plasma using ezetimibe as internal standard. The methods were validated in terms of accuracy, precision, linearity, limits of detection, and limits of quantification. Mosapride and pantoprazole were exposed to acid hydrolysis and then analyzed by the proposed methods. As the methods could effectively separate the drugs from their degradation products, these techniques can be employed as stability-indicating methods that have been successively applied to pharmaceutical formulations without interference from the excipients. Moreover the HPLC method was successfully used in the determination of both drugs in spiked human plasma.

  相似文献   

11.
Simple, sensitive, selective, precise, and stability-indicating thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) methods for the determination of mosapride and pantoprazole in pharmaceutical tablets were developed and validated as per the International Conference on Harmonization guidelines. The TLC method employs aluminum TLC plates precoated with silica gel 60F254 as the stationary phase and ethyl acetate/methanol/toluene (4:1:2, v/v/v) as the mobile phase to give compact spots for mosapride (R f 0.73) and pantoprazole (R f 0.45) separated from their degradation products; the chromatogram was scanned at 276 nm. The HPLC method utilizes a C18 column and a mobile phase consisting of acetonitrile/methanol/20 mM ammonium acetate (4:2:4, v/v/v) at a flow rate of 1.0 mL min?1 for the separation of mosapride (t R 11.4) and pantoprazole (t R 4.4) from their degradation products. Quantitation was achieved with UV detection at 280 nm. The same HPLC method was successfully used in performing calibrations in lower concentration ranges for both drugs in human plasma using ezetimibe as internal standard. The methods were validated in terms of accuracy, precision, linearity, limits of detection, and limits of quantification. Mosapride and pantoprazole were exposed to acid hydrolysis and then analyzed by the proposed methods. As the methods could effectively separate the drugs from their degradation products, these techniques can be employed as stability-indicating methods that have been successively applied to pharmaceutical formulations without interference from the excipients. Moreover the HPLC method was successfully used in the determination of both drugs in spiked human plasma.  相似文献   

12.
Two chromatographic methods were developed for the determination of some anti-fungal drugs in the presence of either their degradation products or cortisone derivatives. The densitometric method determined mixtures of each of ketoconazole (KT), clotrimazole (CL), miconazole nitrate (MN) and econazole nitrate (EN) with the degradation products of each one. Mixtures of MN with hydrocortisone (HC) and of EN with triamcinolone acetonide (TA) were also successfully separated and determined by this technique. For KT and CL, a mixture of methanol:water:triethylamine (70:28:2 v/v) was used as a developing system and the spots were scanned at 243 nm and 220 nm for KT and CL, respectively. For MN and EN, a mixture of hexane:isopropyl alcohol:triethylamine (80:17:3 v/v) was used as a developing system and the spots were scanned at 225 nm for both drugs. The HPLC method determined mixtures of CL or EN with their degradation products which were separated and quantified on a Zorbax C8 column. Elution was carried out using methanol:phosphate buffer pH 2.5 (65:35 v/v) as a mobile phase at a flow rate of 1.5 ml/min and UV detection at 220 nm for CL. For EN, a mixture of methanol:water containing 0.06 ml triethylamine pH 10 (75:25 v/v) was used as a mobile phase at a flow rate of 1.5 ml/min and UV detection at 225 nm. The methods were also used to separate mixtures of CL with betamethasone dipropionate (BD) and EN with TA in a laboratory prepared mixture and in pharmaceutical preparations. The methods were sensitive, precise and applicable for determination of the drugs in pharmaceutical dosage forms.  相似文献   

13.
A convenient HPLC method to determine phenylpropanolamine (PPA) in addition to phenylephrine (PE) and chlorpheniramine (CPA) in commercially available over-the-counter (OTC) preparations has been developed. Sample solutions were prepared by dilution with water or methanol followed by filtration and direct injection into the HPLC system. The mobile phase was a mixture of methanol-acetonitrile-acetic acid (0.1 M)-triethylamine (20:20:60:0.6, v/v/v/v) containing sodium heptanesulfonate (0.5 mM) as an ion pair. The separation was achieved on a reversed-phase ODS column with detection wavelength set at 254 nm. The compounds showed good linearity in the range 2.5-1000 micro M with detection limits ranged from 0.13 to 0.48 micro M. PE, caffeine and CPA were well separated when present together with PPA. The method was applied to the determination of PPA in pharmaceutical preparations including hard and soft capsules.  相似文献   

14.
Canagliflozin (CNZ) is the first sodium–glucose co-transporter-2 inhibitor approved for treatment of type 2 diabetes mellitus. In the proposed work, a sensitive, rapid and validated high-performance thin-layer chromatography (HPTLC) method was established for the estimation of CNZ in human plasma for the first time. HPTLC analysis of CNZ and internal standard (sildenafil) was performed on glass coated silica gel 60 F254 HPTLC plates using a binary mixture of chloroform–methanol 9:1 (%, v/v) as the mobile phase. Densitometric detection was done at 295 nm. Retardation factor values were obtained as 0.22 and 0.52 for the CNZ and the IS, respectively. The linearity range of CNZ was obtained as 200–3,200 ng/ml. A simple protein precipitation method was used for the extraction of analyte from plasma using methanol. The proposed HPTLC technique was validated for linearity, accuracy, precision and robustness. The proposed HPTLC technique was successfully utilized for the assessment of pharmacokinetic profile of CNZ in rats after oral administration. After oral administration, the peak plasma concentration of CNZ was obtained as 1458.01 ng/ml in 2 h. The proposed HPTLC method could be applied to the study of the pharmacokinetic profile of pharmaceutical formulations containing CNZ.  相似文献   

15.
A new simple, precise, rapid, and selective high‐performance thin layer chromatography (HPTLC) method has been developed for the analysis of levofloxacin in pharmaceutical formulations. The method uses lamotrigine as an internal standard. The stationary phase was silica gel 60F254 prewashed with methanol; water‐methanol‐n‐butanol‐ammonia solution 5 + 5 + 5 + 0.4 (v/v) was used as mobile phase. Detection and quantification were performed densitometrically at λ = 298 nm. The linear range of the analysis was 0.8–3.0 μg and the percentage recovery was 99.90%.  相似文献   

16.
An accurate, simple, sensitive and selective reversed phase liquid chromatographic method has been developed for the determination of ebastine in its pharmaceutical preparations. The proposed method depends on the complexation ability of the studied drug with Zn2+ ions. Reversed phase chromatography was conducted using an ODS C18 (150 × 4.6 mm id) stainless steel column at ambient temperature with UV-detection at 260 nm. A mobile phase containing 0.025%w/v Zn2+ in a mixture of (acetonitril/methanol; 1/4) and Britton Robinson buffer (65:35, v/v) adjusted to pH 4.2, has been used for the determination of ebastine at a flow rate of 1 ml/min. The calibration curve was rectilinear over the concentration range of 0.3 - 6.0 μg/ml with a detection limit (LOD) of 0.13 μg/ml, and quantification limit (LOQ) of 0.26 μg/ml. The proposed method was successfully applied for the analysis of ebastine in its dosage forms, the obtained results were favorably compared with those obtained by a comparison method. Furthermore, content uniformity testing of the studied pharmaceutical formulations was also conducted. The composition of the complex as well as its stability constant was also investigated. Moreover, the proposed method was found to be a stability indicating one and was utilized to investigate the kinetics of alkaline and ultraviolet induced degradation of the drug. The first-order rate constant and half life of the degradation products were calculated.  相似文献   

17.
A densitometric high performance thin-layer chromatographic (HPTLC) method was developed and validated for quantitative analysis of L-DOPA in tablets. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone-chloroform-n-butanol-acetic acid glacial-water (60:40:40:40:35 v/v/v/v/v) as mobile phase. Quantitative analysis was carried out at a wavelength of 497 nm. The method was linear between 100 and 500 ng/microL, with a correlation coefficient of 0.999. The intra-assay variation was between 0.26 and 0.65% and the interassay was between 0.52 and 2.04%. The detection limit was 1.12 ng/microL, and the quantification limit was 3.29 ng/microL. The accuracy ranged from 100.40 to 101.09%, with a CV not higher than 1.40%. The method was successfully applied to quantify L-DOPA in real pharmaceutical samples, including the comparison with HPLC measurements. The method was fast, specific, with a good precision, and accurate for the quantitative determination of L-DOPA in tablets.  相似文献   

18.
A binary mixture of hyoscine butylbromide and ketoprofen was determined by 4 different methods. The first involved determination of hyoscine butylbromide and ketoprofen using the ratio-spectra first-derivative spectrophotometric technique at 211 and 234 nm over the concentration ranges of 2-14 and 5-45 microg/mL with mean accuracies 99.84 +/-0.92 and 99.98+/- 0.64%, respectively. The second method utilized second-derivative spectrophotometry over the concentration ranges of 2-14 and 5-35 microg/mL with mean accuracies 99.32+/- 1.06 and 99.55+/-1.15%, respectively. The third method was based on the resolution of the 2 components by bivariate calibration depending on a simple and rapid mathematical algorithm and quantitative evaluation of the absorbances at 206 and 254 nm over concentration ranges of 2-16 and 5-35 microg/mL; mean accuracies of 100.21+/-1.30 and 100.19 +/-1.07% were obtained for hyoscine butylbromide and ketoprofen, respectively. The fourth method was reversed-phase liquid chromatography using 0.05 M ammonium dihydrogen phosphate-acetonitrile-methanol (20 + 30 + 6, v/v) as the mobile phase with ultraviolet detection at 220 nm over concentration ranges of 1-90 and 5-70 microg/mL; mean accuracies were 99.92+/-1.02 and 99.61+/- 0.98%, respectively. The suggested procedures were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical preparations. The methods retained their accuracy and precision when the standard addition technique was applied. The results obtained by applying the proposed methods were statistically analyzed and compared with those obtained by the manufacturer's method.  相似文献   

19.
Losartan (LST) is the first orally active nonpeptide angiotensin-II receptor antagonist with an improved safety and tolerability profile. It is prescribed alone or in combination with hydrochlorothiazide (HCTZ) for the treatment of moderate-to-severe hypertension. This paper describes the development of 2 methods that use different techniques, first-derivative spectroscopy and high-performance thin-layer chromatography (HPTLC), to determine LST and HCTZ in the presence of each other. LST and HCTZ in combined preparations were quantitated by using the first-derivative responses at 271.6 nm for LST and 335.0 nm for HCTZ in spectra of their solutions in water. The linearity ranges are 30-70 microg/mL for LST and 7.5-17.5 microg/mL for HCTZ with correlation coefficients of 0.9998 and 0.9997, respectively. In the HPTLC method, a mobile phase of chloroform-methanol-acetone-formic acid (7.5 + 1.5 + 0.5 + 0.03, v/v) and a prewashed Silica Gel G60 F254 TLC plate as the stationary phase were used to resolve LST and HCTZ in a mixture. Two well-separated and sharp peaks for LST and HCTZ were obtained at Rf values of 0.61+/-0.02 and 0.41+/-0.02, respectively. LST and HCTZ were quantitated at 254.0 nm. The linearity ranges obtained for the HPTLC method are 400-1200 and 100-300 ng/spot with corresponding correlation coefficients of 0.9944 and 0.9979, for LST and HCTZ, respectively. Both methods were validated, and the results were compared statistically. They were found to be accurate, specific, and reproducible. The methods were successfully applied to the estimation of LST and HCTZ in combined tablet formulations.  相似文献   

20.
A simple, accurate, and precise high-performance thin layer chromatographic (HPTLC) method has been developed and validated for the simultaneous quantification of antihypertensive drugs, amlodipine (AML), hydrochlorothiazide (HCTZ), lisinopril (LIS), and valsartan (VAL) in their pharmaceutical formulations and human plasma. Separation of the drugs was performed on aluminum-backed layer of silica gel 60?F254 using a mixture of methanol–dichloromethane–glacial acetic acid (9.0:1.0:0.1, v/v/v) as the mobile phase. Densitometric determination of the separated spots was done at 215?nm. The retention factors (Rf) obtained under the optimized conditions were 0.56, 0.75, 0.29, and 0.67 for AML, HCTZ, LIS, and VAL, respectively. Linearity of the method was established in the range of 200–1,500?ng/band for AML, 300–1,500?ng/band for HCTZ, 400–2,000?ng/band for LIS, and 1,000–7,000?ng/band for VAL. The limit of detection/limit of quantitation of the method found were 54.21/164.28, 77.27/234.15, 83.45/252.87, and 156.48/474.19?ng/band for AML, HCTZ, LIS, and VAL, respectively. To determine the drugs in spiked plasma samples, solid phase extraction was performed, which provided highly consistent and quantitative recovery for all four drugs. The method was satisfactorily applied for the analysis of different tablet formulations and proved to be specific and accurate for the quality control of these drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号