首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of UCl4 with the hexadentate Schiff bases H2Li in thf gave the expected [ULiCl2(thf)] complexes [H2Li=N,N'-bis(3-methoxysalicylidene)-R and R = 2,2-dimethyl-1,3-propanediamine (i= 1), R = 1,3-propanediamine (i= 2), R = 2-amino-benzylamine (i= 3), R = 2-methyl-1,2-propanediamine (i= 4), R = 1,2-phenylenediamine (i= 5)]. The crystal structure of [UL4Cl2(thf)] (4) shows the metal in a quite perfect pentagonal bipyramidal configuration, with the two Cl atoms in apical positions. Reaction of UCl4 with H4Li in pyridine did not afford the mononuclear products [U(H2Li)Cl2(py)x] but gave instead polynuclear complexes [H4Li=N,N'-bis(3-hydroxysalicylidene)-R and R = 1,3-propanediamine (i= 6), R = 2-amino-benzylamine (i= 7) or R = 2-methyl-1,2-propanediamine (i= 8)]. In the presence of H4L6 and H4L7 in pyridine, UCl4 was transformed in a serendipitous and reproducible manner into the tetranuclear U(iv) complexes [Hpy]2[U4(L6)2(H2L6)2Cl6] (6a) and [Hpy]2[U4(L7)2(H2L7)2Cl6][U4(L7)2(H2L7)2Cl4(py)2] (7), respectively. Treatment of UCl4 with [Zn(H2L6)] led to the formation of the neutral compound [U4(L6)2(H2L6)2Cl4(py)2] (6b). The hexanuclear complex [Hpy]2[U6(L8)4Cl10(py)4] (8) was obtained by reaction of UCl4 and H4L8. The centrosymmetric crystal structures of 6a.2HpyCl.2py, 6b.6py, 7.16py and 8.6py illustrate the potential of Schiff bases as associating ligands for the design of polynuclear assemblies.  相似文献   

2.
The complexes [Ru2(CO)2(μ-CO)(μ-CMe)(η-C5H5)2]? and [Ru2CO2(μ-CO)(μ-CCH2)(η-C5H5)2] react together to give [{Ru2CO)3(η-C5H5)2}2(μ-CMeCHCH)]+ and [{Ru3(CO)3(η-C5H5)3}(μ-CCH2CHC){Ru2(CO)3(η-C5H5)2}], each characterised by X-ray diffraction. The former results from ethylidyne-vinylidene linking followed by an alkylidyne to vinyl rearrangement.  相似文献   

3.
A simple template-mediated route, starting from triethalolamine 1, sodium hydride or caesium carbonate, and iron(III) chloride led to the six- and eight-membered iron coronates [Na c [Fe6[N(CH2CH2O)3]6]]+ (2) and [Cs c (Fe8[N(CH2CH2O)3]8]]+ (3). In the reaction of N-methyldiethanolamine 4 (H2L1) or N-(2,5-dimethylbenzyl)iminodiethanol 6 (H2L2) with calcium hydride followed by addition of a solution of iron(III) chloride, the neutral unoccupied coronands [Fe6Cl6(L1)6] (5) and [Fe6Cl6(L2)6] (7) were formed. Subsequent exchange of the chloride ions of 7 by bromide or thiocyanate ions afforded the ferric wheels [Fe6Br6(L2)6] (8) or [Fe6(NCS)6(L2)6] (9), respectively. Titration experiments of solutions of dianion (L1)2- with iron(III) chloride in THF revealed interesting mechanistic details about the self-assembling process leading to 5. At an iron/ligand ratio of 1:1.5 star-shaped tetranuclear [Fe[Fe(L1)2]3] (11) was isolated. However, at an iron/ligand ratio of 1:2, complex 11 was transformed into the ferric wheel 5. It was shown, that the interconversion of 5 and 11 is reversible. Based on the mechanistic studies, a procedure was developed which works for both the synthesis of homonuclear 11 and the star-shaped heteronuclear clusters [Cr[Fe(L1)2]3] (12) and [Al[Fe(L1)2]3] (13). The structures of all new compounds were determined unequivocally by single-crystal X-ray analyses.  相似文献   

4.
The synthesis and characterisation of copper(i) complexes, including two crystal structures of the new chiral pyridine-containing macrocyclic ligands (PC-type), and their use as catalysts in asymmetric cyclopropanation reactions are reported.  相似文献   

5.
The reactions between M[N(SiMe3)2]2 (M = Ge, Sn) and three pyridine-based dialcohols yielded germylenes and stannylenes 1-6. The composition and structures of the novel compounds were established by elemental analyses, 1H and 13C NMR spectroscopy. The structures of insoluble species were confirmed by conversion to the corresponding dibromides 7-9. The single crystal structures of stannylene 4 and germylene 5 were determined by X-ray diffraction analyses. The germanium compound was found to be monomeric whilst the tin compound is a dimer. Both compounds possess strong transannular MN interaction in the solid phase.  相似文献   

6.
[MBr(CO)5] reacts with m-ethynylphenylamine and pyridine-2-carboxaldehyde in refluxing tetrahydrofuran to give, fac-[MBr(CO)3(py-2-CHN-C6H4-m-(CCH))] (M = Mn, 1a; Re, 2a). The same method affords the tetracarbonyl [Mo(CO)4{py-2-CHN-C6H4-m-(CCH)}] (3a) starting from [Mo(CO)4(piperidine)2]; and the methallyl complex [MoCl(η3-C3H4Me-2)(CO)2{py-2-CHN-C6H4-m-(CCH)}] (4a) from [MoCl(η3-C3H4Me-2)(CO)2(NCMe)2]. The use of p-ethynylphenylamine gives the corresponding derivatives (1b, 2b, 3b, and 4b) with the ethynyl substituent in the para-position at the phenyl ring of the iminopyridine. All complexes have been isolated as crystalline solids and characterized by analytical and spectroscopic methods. X-ray determinations, carried out on crystals of 1a, 1b, 2a, 2b, 3b, 4a, and 4b, reveals the same structural type for all compounds with small variations due mainly to the different size of the metal atoms. The reaction of complexes 1a or 2a with dicobalt octacarbonyl affords the tetrahedrane complexes [MBr(CO)3{py-2-CHN-C6H4-m-{(μ-CCH)Co2(CO)6}}] (M = Mn, 5; Re, 6), the structures of which have been confirmed by an X-ray determination on a crystal of compound 5.  相似文献   

7.
The sizes of soluble polyelectrolyte complexes formed through mixing of solutions of dimethyl sulfate-alkylated rigid pyridine-containing polyphenylene dendrimers of various generations with the solution of sodium polystyrenesulfonate are measured with the use of dynamic light scattering. Effects of the length of the polyanion chain of the dendrimer, the generation number of the dendrimer, and the charge ratio of polymer components on the sizes of the complexes are examined. The results of this study are in agreement with the theoretical analysis of interaction between the charged dendrimer and the polyelectrolyte of the opposite charge sign and suggest the spontaneous formation of nanosized particles of water-soluble complexes.  相似文献   

8.
Since the disclosure that manganese complexes of certain azamacrocyclic ligands were potent low-temperature bleaching catalysts, considerable effort has focussed on their development towards the efficient catalytic oxidation of other substrates, principally with the environmentally benign oxidant H(2)O(2). These efforts have resulted in a broad substrate scope for the system, including alkenes (to give both epoxides and cis-diols as potential products), alcohols, sulfides and C-H oxidation. Additional developments include the heterogenisation of catalytic systems as well as the first generation of enantiomerically pure ligand systems for application in asymmetric epoxidation catalysis. To date there has only been modest success in this regard, but as our understanding of the nature of the active oxidant(s) continues to develop it is likely that there will be viable applications for these systems in the near future.  相似文献   

9.
The structure of the [Mn6(O)2(Piv)10L2] compound, where Piv is the pivalate anion and L is isonicotinamide, is investigated. Its solid phase is found to be formed by polymeric layers within which hexanuclear fragments {Mn6(O)2(Piv)10} are bound by bidentate bridging L. The molecules of the solvent (Me2CO or EtOAc) in which the synthesis was performed are incorporated into the inter-layer space of the crystal.  相似文献   

10.
Acid-functionalized symmetric and dissymmetric salen-type ligands were synthesized via a novel self-protection step in a quantitative yield. This synthetic method allows one to quickly prepare salen-based dissymmetric chiral compounds with tailorable coordinating properties. Therefore, this approach provides a blueprint for synthesizing and evaluating a new class of acid-functionalized salen ligands that can be used as chiral building blocks for a wide range of catalysts and coordination polymers with chemically tailorable properties.  相似文献   

11.
Abstract  Two new nickel(II) complexes, namely [Ni(BPSE)](BF4) 1, and [Ni (5-BST)CH3OH]ClO4 2 [BPSE = 2-benzoylpyridinesalicylidene ethylenediamine, 5-BST = 5-bromosalicylidene-tris(2-aminoethyl)amine] have been synthesized and characterized using various physico-chemical methods. The magnetic and spectroscopic data indicate a distorted square planar geometry for complex 1, while complex 2 is assigned a distorted octahedral geometry. Complex 1 crystallized in the triclinic space group P-1. Complex 2 adopts an octahedral geometry with space group symmetry P 21/n. The superoxide dismutase activity of these complexes has been measured. Graphical Abstract  This paper describes three new nickel (II) complexes viz; [Ni(BPSE)](BF4) 1, [Ni(BSE)] 2 and [Ni (5-BST) CH3OH] ClO4 3 [BPSE = 2-benzoylpyridine salicyledene-ethylenediamine, BSE = bis(salicylaldehyde) ethylenediamine, 5-BST = 5-bromosalicyledene-tris(2-amino ethyl) amine]. The magnetic and spectroscopic data indicate a distorted square planar geometry for complex 1 and 2, while the comlplex 3 is assigned a distorted octahedral geometry. Superoxide dismutase activity of these complexes have also been measured. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Tris-beta-diketonate lanthanide(III) complexes (Ln = Eu, Er, Yb, Tb), of general formula [Ln(acac)3 L(m)], with chelating ligands such as 4,7-disubstituted-1,10-phenanthrolines and 4,4'-disubstituted-2,2'-bipyridines, have been synthesized and fully characterized. The inductive effects of the para-substituents on the aromatic N-donor ligands have been investigated both in the solid and in the solution states. Single-crystal X-ray structures have been determined for the diethyl 1,10-phenanthroline-4,7-dicarboxylate europium and 4,4'-dimethoxy-2,2'-bipyridine erbium derivatives, revealing a distorted square antiprismatic geometry around the lanthanide atom in both cases. The influence exerted by the p,p'-substituents with respect to the nitrogen coordinating atoms on the Ln-N bond distances is discussed comparing the geometrical parameters with those found for the crystal structures containing the fragments [Ln(III)(phen)] and [Ln(III)(bipy)] obtained from the Cambridge Structural Database. The influence exerted by the electron-attracting groups on the coordination ability of the ligands, that in some cases becomes lack of coordination of the lanthanide ions, has been also detected in solution where the loss of the ligand has been followed by UV-vis spectroscopy. Moreover, the use of relatively long alkoxy chains as substituents on the 1,10-phenanthroline ligand led to the formation of a promesogenic lanthanide complex, whose thermal behavior is encouraging for the synthesis of new lanthanide liquid-crystalline species.  相似文献   

13.
The hepta- and octa-dentate ligands N,N′-bis(2-aminobenzyl)-1,10-diaza-15-crown-5 (L1) and N,N′-bis(2-aminobenzyl)-1,10-diaza-18-crown-6 (L2), respectively, form stable mononuclear Mn(II) complexes. Spectrophotometric titrations performed in acetonitrile solution indicate the formation of mononuclear Mn(II) complexes with both ligands, and no evidence for the formation of binuclear complexes was obtained. The optimal architecture of L1 allows it to impose the less usual pentagonal bipyramidal geometry on the Mn(II) guest, and the X-ray crystal structure of [Mn(L1)](ClO4)2 shows that the Mn(II) ion is deeply buried in the receptor cavity, coordinated to the seven available donor atoms, with the perchlorate anions remaining outside the metal coordination sphere. In spite of its higher denticity, the receptor L2 is unable to form the expected binuclear complexes. The X-ray crystal structure of [Mn(L2)](NO3)2 consists of the [Mn(L2)]2+ cation and nitrate anions involved in hydrogen-bonding interactions with the aniline groups. In [Mn(L2)]2+ the metal ion is also placed in the crown hole, but as a result of the large size of the macrocyclic cavity only six of the eight available donor atoms of the receptor form part of the Mn(II) coordination sphere, with the Mn(II) ion found in a distorted octahedral coordination environment.  相似文献   

14.
Wu G  Wang XF  Okamura TA  Sun WY  Ueyama N 《Inorganic chemistry》2006,45(21):8523-8532
Seven coordination compounds, [Zn(L3)Cl2] . MeOH . H2O (1), [Mn(L3)2Cl2] . 0.5EtOH . 0.5H2O (2), [Cu3(L2)2Cl6] . 2DMF (3), [Cu3(L2)2Br6] . 4MeOH (4), [Hg2(L4)Cl4] (5), [Hg2(L4)Br4] (6), and [Hg3(L4)2I6] . H2O (7), were synthesized by the reactions of ligands 1,3,5-tris(3-pyridylmethoxyl)benzene (L3), 1,3,5-tris(2-pyridylmethoxyl)benzene (L2), and 1,3,5-tris(4-pyridylmethoxyl)benzene (L4) with the corresponding metal halides. All the structures were established by single-crystal X-ray diffraction analysis. In complexes 1 and 2, L3 acts as a bidentate ligand using two of three pyridyl arms to link two metal atoms to result in two different 1D chain structures. In complexes 3 and 4, each L2 serves as tridentate ligand and connects three Cu(II) atoms to form a 2D network structure. Complexes 5 and 6 have the same framework structure, and L4 acts as a three-connecting ligand to connect Hg(II) atoms to generate a 3D 4-fold interpenetrated framework, while the structure of complex 7 is an infinite 1D chain. The results indicate that the flexible ligands can adopt different conformations and thus can form complexes with varied structures. In addition, the coordination geometry of the metal atom and the species of the halide were found to have great impact on the structure of the complexes. The photoluminescence properties of the complexes were investigated, and the Zn(II), Mn(II) and Hg(II) complexes showed blue emissions in solid state at room temperature.  相似文献   

15.
The formation of Ag(I) complexes with 2,2'-bipyridine (bipy), 2,2'6',2' '-terpyridine (terpy), 2-(aminomethyl)pyridine (amp), and bis((2-pyridyl)methyl)amine (dpa) is studied in dimethyl sulfoxide (dmso) by means of potentiometric and calorimetric measurements. Enthalpy-stabilized mononuclear MLj complexes are formed, whereas entropy changes counteract complex formation. Additionally, a comparison with analog Ag-polyamine species is made to evidence the significant different coordination behavior of these classes of ligands. The results are discussed in terms of different basicity and steric requirements of the ligands and solvation effects. The dpa ligand, with an unprecedented coordination pattern, forms also a bimetallic complex [Ag2(dpa)2]2+ that has been structurally characterized in the solid state by X-ray diffraction. The influence of solvent, water and dmso, on the binding energy of the monodentate pyridine to Ag(I) has also been assessed by means of density functional theory (DFT) calculations. This study has been extended also in vacuum to the reaction of Ag(I) with the simple monoamine methylamine (mea). These results are correlated with the experimental evidence and used to interpret the different affinities of pyridine for the Ag(I) ion in the two media.  相似文献   

16.
Four hexanuclear molybdenum chloride cluster complexes containing terminal thiolate ligands have been synthesized and fully characterized. (Bu 4N) 2[Mo 6Cl 8(SEt) 6] was prepared by reacting Na 2[Mo 6Cl 8(OMe) 6] with an excess of ethanethiol in refluxing tetrahydrofuran. (PPN) 2[Mo 6Cl 8(SBu) 6], (Bu 4N) 2[Mo 6Cl 8(SBn) 6], and (Bu 4N) 2[Mo 6Cl 8(SNC 8H 6) 6] (C 8H 6NS (-) = 3-indolylthiolate) were subsequently prepared in the reaction of [Mo 6Cl 8(SEt) 6] (2-) with an excess of HSR (R = Bu, Bn or 3-indolyl). Single crystal X-ray diffraction analyses were performed on two of these complexes: (PPN) 2[Mo 6Cl 8(SEt) 6].Et 2O, crystallizes in the triclinic space group P1 with a = 12.3894(11), b = 13.7651(12), c = 15.0974(13), alpha = 103.975(2), beta = 99.690(2), gamma = 98.062(2), and Z = 1; (PPh 3Me) 2[Mo 6Cl 8(SBn) 6].2NO 2CH 3, also crystallizes in the P1 space group with a = 12.1574(16), b = 13.4441(17), c = 14.2132(18), alpha = 89.654(2), beta = 88.365(2), gamma = 71.179(2), and Z = 1. Our studies demonstrate that [Mo 6Cl 8(SEt) 6] (2-) displays luminescent properties and that the same complex undergoes substitution reactions with different thiols, as well as reaction with electrophilic reagents such as MeI.  相似文献   

17.
Summary Manganese(II) complexes of bis(2-benzimidazolylmethyl) ether (DGB), bis(2-benzimidazolylmethyl) sulphide (TGB) and the n-butyl derivative of DGB (BDGB) were prepared and characterised. The solution e.p.r. spectrum of [Mn(TGB)Cl2] in DMF at 143 K is commensurate with an axially distorted monomeric manganese(II) complex, room temperature magnetic moment (6.04 B.M.) per manganese(II) atom being in the range found for other d5 monomeric manganese(II) complexes. The solution e.p.r. spectrum of [Mn(BDGB)Cl2]-2H2O in DMF at 143 K indicates the presence of two equivalent manganese(II) ions coupled by an exchange interaction, fostered by bridging chlorides. Evidence for this is provided by a nearly isotropic 11 line hyperfine structure of 55Mn, with a coupling constant 45 ± 5G. Contact-shifted 1H n.m.r. data also supports an exchange coupled dimeric manganese complex. The room temperature magnetic moment, 5.64 B.M., per manganese(II) indicates quenching of the magnetic moment below that of monomeric manganese(II) ion. The [Mn(DGB)Cl2]·H2O complex exhibits a magnetic moment of 6.02 B.M. per manganese, indicating a monomeric manganese complex. E.p.r. data of the complex diluted in an analogous Zn-DGB complex (1∶20) correlates well for D = 0.22cm−1 and λ ∼- 0.267. The [Mn(DGB)-(C1O4)2] and [Mn(BDGB)(ClO4)2] complexes, diluted in analogous Zn-DGB and Zn-BDGB complexes (1∶20), show a strong single e.p.r. line at g eff ∼- 2. The complexes have low magnetic moments; 4.44 B.M./Mn and 4.39 B.M./Mn, at room temperature.  相似文献   

18.
19.
Carbon monoxide (CO) is an important signaling molecule which plays significant roles in the pathogenesis of cancer. CO is produced by enzymatic degradation of heme in mammals. Heme oxygenase 1 (HO-1) catalyzes the breakdown of heme into CO, ferrous iron, and biliverdin. CO induces HO-1 and inhibits cell proliferation. Cancer cells exposed to several stress factors (hypoxia, reactive oxygen species, cis-platin, and oxidative stress), and HO-1 displays cytoprotective role against oxidative stress and inhibits apoptosis, metastases, angiogenesis, and cell proliferation processes. Therefore, metal containing CO-releasing molecules (CORMs) have been designed as an effective cancer treatment strategy. CORMs are responsible for releasing controlled amounts of CO to cells and tissues. Thus, we synthesized [Mn(CO)3(bpy)L]X manganese containing CORMs [bpy = 2,2′-bipyridine, X = hexafluorophosphate (PF6), trifluoromethanesulfonate (OTf), L = imidazole, methylimidazole, benzimidazole, N-benzylbenzimidazole, N-(4-chlorobenzyl)benzimidazole] to release CO in human invasive ductal breast (MCF-7) cell line. In vitro experiments indicated that the compounds inhibited cell proliferation and exhibited cytotoxic effect on breast cancer cells. Moreover, side groups of the compounds enhanced the anticancer effects in MCF-7 cell line. These manganese containing CORMs gave promising results and may be used as a drug template for effective treatment of invasive ductal breast carcinoma.  相似文献   

20.
[MBr(CO)3{κ2(N,O)-pyca}] [M = Mn(1a), Re(1b), pyca = pyridine-2-carboxaldehyde] and [MoCl(η3-C3H4Me-2)(CO)2{κ2(N,O)-pyca}] (1c) react with aminoacid β-alanine to give the corresponding iminopyridine complexes 2a-2c. The same method affords the iminopyridine derivatives from γ-aminobutyric acid (GABA) (3a-3c) and 3-aminobenzoic acid (4a-4c). For complexes 2a-2c, 3a, 3c and 4a, the solid state structures have been determined by X-ray crystallography, revealing interesting differences in their hydrogen-bonding patterns in solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号