首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a method to obtain Hugoniot from model calculations based on density functional theory, and apply the method to aluminum Hugoniot. Technological advances have extended the experimental research of high energy density physics, and call for quantitative theoretical analysis. However, direct computation of Hugoniot from density functional theory is very difficult. We propose two step calculations of Hugoniot from density functional theory. The first step is molecular dynamics simulations with an ambient temperature for electrons. The second step is total energy calculations of a crystal with desired high temperatures for electrons and with the ambient temperature for electrons. We treated the semicore 2s and 2p electrons of aluminum as valence electrons only for the total energy calculations of the aluminum crystal. The aluminum Hugoniot from our model calculations is in excellent agreement with available experimental data and the previous density functional theory calculations in the literature.  相似文献   

2.
We derive a theory for the elastic characterization of multicracked solids based on a homogenization technique. We consider a material containing a two-dimensional arbitrary distribution of parallel slit cracks which is elastically equivalent to a crystal with orthorhombic symmetry. We obtain explicit expressions for the macroscopic elastic stiffness tensor which is found to depend upon both the density of cracks and their angular distribution, here described by a suitable order parameter. For the isotropic case, we find that the degradation depends exponentially on the crack density. In addition, we show an unusual elastic behavior of a multicracked medium in the plane strain condition: for a negative Poisson ratio, we obtain an effective Young modulus greater than the actual value of the host matrix.  相似文献   

3.
《Physica A》1988,153(2):315-325
A unified theory of discrete and continuous-time resolvent matrix method is described in terms of the waiting-time density. We obtain a differential evolution equation for the marginal probability distribution, after summing over the internal states of a Markovian chain. The example of the continuous-time Lorentz-gas model is presented as an application of this theory.  相似文献   

4.
We find the lattice spacing dependence of the eigenvalue density of the non-Hermitian Wilson Dirac operator in the ? domain. The starting point is the joint probability density of the corresponding random matrix theory. In addition to the density of the complex eigenvalues we also obtain the density of the real eigenvalues separately for positive and negative chiralities as well as an explicit analytical expression for the number of additional real modes.  相似文献   

5.
6.
We develop a theory for a generic instability of a Fermi liquid in dimension d>1 against the formation of a Luttinger-liquid-like state. The density of states at the Fermi level is the order parameter for the ensuing quantum phase transition, which is driven by the effective interaction strength. A scaling theory in conjunction with an effective field theory for clean electrons is used to obtain the critical behavior of observables. In the Fermi-liquid phase the order-parameter susceptibility, which is measurable by tunneling, is predicted to diverge for 1相似文献   

7.
M. Moradi  F. Taghizadeh 《Physica A》2008,387(26):6463-6470
Density functional theory is used to study the structure of a one dimensional fluid model of hard-ellipse molecules with their axes freely rotating in a plane, confined between hard walls. A simple Hypernetted chain (HNC) approximation is used for the density functional of the fluid and the integral equation for the density is obtained from the grand potential. The only required input is the direct correlation function of the one dimensional hard-ellipse fluid. For this model, the pressure, sum rule and the density at the walls are obtained. The Percus Yevick (PY), for lower density, and HNC, for higher density, integral equations are also solved to obtain the direct correlation function of hard-ellipse model introduced here. We obtain the average density at the wall as well as the radial density profile. We compare these with Monte Carlo simulations of the same model and find reasonable agreement.  相似文献   

8.
We have found a way to analyze Edwards' density of states for static granular packings in the special case of round, rigid, frictionless grains assuming a constant coordination number. It obtains the most entropic density of single grain states, which predicts several observables including the distribution of contact forces. We compare these results against empirical data obtained in dynamic simulations of granular packings. The agreement is quite good, helping validate the use of statistical mechanics methods in granular physics. The differences between theory and empirics are mainly related to the coordination number, and when the empirical data are sorted by that number we obtain several insights that suggest an underlying elegance in the density of states.  相似文献   

9.
We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.  相似文献   

10.
The self-consistency of a thermodynamical theory for hadronic systems based on the non-extensive statistics is investigated. We show that it is possible to obtain a self-consistent theory according to the asymptotic bootstrap principle if the mass spectrum and the energy density increase q-exponentially. A direct consequence is the existence of a limiting effective temperature for the hadronic system. We show that this result is in agreement with experiments.  相似文献   

11.
The localization transition and the critical properties of the Lorentz model in three dimensions are investigated by computer simulations. We give a coherent and quantitative explanation of the dynamics in terms of continuum percolation theory and obtain an excellent matching of the critical density and exponents. Within a dynamic scaling ansatz incorporating two divergent length scales we achieve data collapse for the mean-square displacements and identify the leading corrections to scaling. We provide evidence for a divergent non-Gaussian parameter close to the transition.  相似文献   

12.
We consider the problem of exact integration of the field equations in the scalar—tensor theory of gravity for the case in which matter is an ideal fluid and the metric for space is given in Robertson—Walker form. We obtain a solution (in quadratures) for an arbitrary equation of state and an arbitrary time-dependent density for matter. Tomsk State Pedagogical University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 124–127, January, 1997.  相似文献   

13.
14.
We obtain the exact expression for the Von Neumann entropy for an infinite bipartition of the XYZ model, by connecting its reduced density matrix to the corner transfer matrix of the eight vertex model. Then we consider the anisotropic scaling limit of the XYZ chain that yields the (1+1)-dimensional sine-Gordon model. We present the formula for the entanglement entropy of the latter, which has the structure of a dominant logarithmic term plus a constant, in agreement with what is generally expected for a massive quantum field theory.  相似文献   

15.
We analyze (1 + 1)D kinetic equations for neuronal network dynamics, which are derived via an intuitive closure from a Boltzmann-like equation governing the evolution of a one-particle (i.e., one-neuron) probability density function. We demonstrate that this intuitive closure is a generalization of moment closures based on the maximum-entropy principle. By invoking maximum-entropy closures, we show how to systematically extend this kinetic theory to obtain higher-order, kinetic equations and to include coupled networks of both excitatory and inhibitory neurons.  相似文献   

16.
Using the Monte Carlo method, we have computed the equation of state of a system of hard spherocylinders (cylinders with a hemisphere at each end), of length-to-breadth ratio equal to 3, in the isotropic liquid phase. We obtain a pressure slightly smaller than that predicted by the scaled-particle theory (SPT). The SPT predicts a liquid to nematic transition when the density is increased; we have observed that the isotropic liquid phase is stable up to densities significantly higher than the SPT transition density. Using the free-volume theory, we have also determined the behaviour of the pressure at very high densities, for any value of the length-to-breadth ratio γ. Moreover, we have shown that the packing fraction (number density times the volume of one spherocylinder) corresponding to the beginning of the fusion of the solid is an increasing function of γ.  相似文献   

17.
A model calculation is reported for the tunneling probability of one as well as two interacting electrons from a quantum well within a narrow channel. We discuss the cases when the two electrons are spin polarized or unpolarized by transforming the system to a noninteracting one with the use of quantal density functional theory to obtain an effective single-particle confining potential. A semiclassical approach is used to obtain the tunneling probability from this effective potential. The calculation is motivated by recent measurements of the conductance of an electron gas in a narrow channel but is not meant to explain the anomalous behavior that has been reported since, for example, we deal with a simplified two-level system. Numerical results for the tunneling probability are presented.  相似文献   

18.
Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems   总被引:2,自引:1,他引:2  
We develop a Hamiltonian theory of a time dispersive and dissipative inhomogeneous medium, as described by a linear response equation respecting causality and power dissipation. The proposed Hamiltonian couples the given system to auxiliary fields, in the universal form of a so-called canonical heat bath. After integrating out the heat bath the original dissipative evolution is exactly reproduced. Furthermore, we show that the dynamics associated to a minimal Hamiltonian are essentially unique, up to a natural class of isomorphisms. Using this formalism, we obtain closed form expressions for the energy density, energy flux, momentum density, and stress tensor involving the auxiliary fields, from which we derive an approximate, “Brillouin-type,” formula for the time averaged energy density and stress tensor associated to an almost mono-chromatic wave.  相似文献   

19.
《Nuclear Physics B》1995,437(3):611-623
We calculate the density of states with given mass and spin in string theory and obtain asymptotic formulas. We also compute the tree-level magnetic dipole moments of arbitrary physical states in the heterotic string theory. These results are then applied to study whether fundamental strings can consistently describe the microphysics of the black hole horizon in the case of a general classical solution characterized by mass, charge and angular momentum.  相似文献   

20.
For a thermal field theory formulated in the grand canonical ensemble, the distribution of the total momentum is an observable characterizing the thermal state. We show that its cumulants are related to thermodynamic potentials. In a relativistic system, for instance, the thermal variance of the total momentum is a direct measure of the enthalpy. We relate the generating function of the cumulants to the ratio of (a) a partition function expressed as a Matsubara path integral with shifted boundary conditions in the compact direction and (b) the ordinary partition function. In this form the generating function is well suited for Monte Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang-Mills theory and obtain the entropy density at three different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号