首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of Ge(105)-(1 x 2) grown on Si(105) is examined by scanning tunneling microscopy (STM) and first-principles calculations. The morphology evolution with an increasing amount of Ge deposited documents the existence of a tensile surface strain in Si(105) and its relaxation with increasing coverage of Ge. A detailed analysis of high-resolution STM images and first-principles calculations produce a new stable model for the Ge(105)-(1 x 2) structure formed on the Si(105) surface that includes the existence of surface strain. It corrects the model developed from early observations of the facets of "hut" clusters grown on Si(001).  相似文献   

2.
We show that low area density Ge/Si(100) island ensembles comprised solely of hut and pyramid clusters do not undergo Ostwald ripening during days-long growth temperature anneals. In contrast, a very low density of large, low chemical potential Ge islands reduce the supersaturation causing the huts and pyramids to ripen. By assuming that huts lengthen by adding single {105} planes that grow from apex-to-base, we use a mean-field facet nucleation model to interpret these experimental observations. We find that each newly completed plane replenishes the nucleation site at the hut apex and depletes the Ge supersaturation by a fixed amount. This provides a feedback mechanism that reduces the island growth rate. As long as the supersaturation remains high enough to support nucleation of additional planes on the narrowest hut cluster, Ostwald ripening is suppressed on an experimental time scale.  相似文献   

3.
利用原位的反射式高能电子衍射和非原位的X射线衍射技术,研究了活化剂Sb对于Ge在Si上外延过程的影响.当没有活化剂、Ge层厚度为6nm时,外延Ge层形成岛状,应力完全释放.当有Sb时、Ge在Si上的生长是二维的,并且应力释放是缓慢的,即使Ge外延层厚为6nm,仍有42%的应变没有弛豫. 关键词:  相似文献   

4.
Formation energies for Ge/Si(100) pyramidal islands are computed combining continuum calculations of strain energy with first-principles-computed strain-dependent surface energies. The strain dependence of surface energy is critically impacted by the presence of strain-induced changes in the Ge {100} surface reconstruction. The appreciable strain dependencies of rebonded-step {105} and dimer-vacancy-line-reconstructed {100} surface energies are estimated to give rise to a significant reduction in the surface contribution to island formation energies.  相似文献   

5.
We apply a selective etching procedure to probe the lateral composition profile of self-assembled SiGe pyramids on a Si(001) substrate surface. We find that the pyramids consist of highly Si intermixed corners, whereas the edges, the apex, and the center of the pyramids remain Ge rich. Our results cannot be explained by existing growth models that minimize strain energy. We use a model that includes surface interdiffusion during island growth, underlining the paramount importance of surface processes during the formation of self-assembled quantum dot heterostructures in many different material systems.  相似文献   

6.
In situ morphological investigation of the “105” faceted Ge islands on the Si(001) surface (hut clusters) have been carried out using an ultra high vacuum instrument integrating a high resolution scanning tunnelling microscope and a molecular beam epitaxy vessel. Both species of hut clusters-pyramids and wedges-were found to have the same structure of the “105” facets which was visualized. Structures of vertexes of the pyramidal clusters and ridges of the wedge-shaped clusters were revealed as well and found to be different. This allowed us to propose a crystallographic model of the “105” facets as well as models of the atomic structure of both species of the hut clusters. An inference is made that transitions between the cluster shapes are impossible.  相似文献   

7.
Real-time scanning tunneling microscopy observations of nucleation and heteroepitaxial growth of Ge nanocrystals (from germane) on Si(001) indicate that in the absence of Si-Ge intermixing the formation of full hut cluster islands is preceded by the nucleation of "subcritical" nuclei consisting of two adjacent truncated tetrahedral pyramids, which, upon unification, form a tiny square-based pyramidal "critical nucleus" It is suggested that such a precursor aids in surpassing the nucleation barrier and that the recently reported gradual faceting of prepyramids is characteristic of only Ge(Si) alloys.  相似文献   

8.
We investigate the embedding of Ge islands in a Si matrix by means of atomic force microscopy and photoluminescence (PL) spectroscopy. The Ge islands were grown between 360°C and 840°C and subsequently capped with Si at different temperatures. For the highest Ge growth temperature (840°C), we show that the surface flattens at high Si capping temperatures while new facets can be identified at the island base for intermediate capping temperatures (650–450°C). At low capping temperatures (300–350°C), the island morphology is preserved. In contrast to the observed island shape changes, the decreasing Si capping temperature causes only a small redshift of the island related PL signal for islands grown on high temperatures. This redshift increases for Ge islands grown at lower temperatures due to an increased Ge content in the islands. By applying low-temperature capping (300°C) on the different island types, we show that the emission wavelength can be extended up to 2.06 μm for hut clusters grown at 400°C. Further decreasing of the island growth temperature to 360°C leads to a PL blueshift, which is explained by charge carrier confinement in Ge quantum dots.  相似文献   

9.
T. Kawamura 《Phase Transitions》2013,86(2-4):215-233
Based on Monte Carlo simulations for molecular beam epitaxy, three types of growth related transitions on the Si(001) and Ge(001) surfaces have been studied. In the thermal roughening simulations on a Ge(001) surface, a different type of transition from the Kosterlitz and Thouless type is obtained. The simulated result is consistent with the experimental x-ray diffraction data, at least qualitatively. In the growth simulations, a transition in the shape of growing islands is shown at the very initial stage of the homoepitaxial growth on a Si(001)-2x1 flat surface. During the transition, the step density variations as a function time show different behaviors at various temperatures. In the homoepitaxial growth on Si(001)-2x1 vicinal surfaces, the growth mode transition from two-dimensional island formation to the step-flow mode is reproduced by increasing the system temperature, which agrees qualitatively with the observed results. At the intermediate temperature, a transient growth mode is obtained, in which the two-dimensional island formation and the step flow growth modes coexist on two types of terraces on the surface.  相似文献   

10.
Equilibrium model of bimodal distributions of epitaxial island growth   总被引:1,自引:0,他引:1  
We present a nanostructure diagram for use in designing heteroepitaxial systems of quantum dots. The nanostructure diagram is computed using a new equilibrium statistical physics model and predicts the island size and shape distributions for a range of combinations of growth temperature and amount of deposited material. The model is applied to Ge on Si(001), the archetype for bimodal island growth, and the results compare well with data from atomic force microscopy of Ge/Si islands grown by chemical vapor deposition.  相似文献   

11.
《Comptes Rendus Physique》2013,14(7):542-552
Ge/Si(001) is a prototypical system for investigating three-dimensional island self-assembly owed to the Stranski–Krastanow growth mode. More than twenty years of research have produced an impressive amount of results, together with various theoretical interpretations. It is commonly believed that lattice-mismatch strain relief is the major driving force leading to the formation of these islands. However, a set of recent results on Si(001) and vicinals point out that, under suitable conditions, this is not the case. Indeed, we here review experimental and theoretical results dealing with nanostructures mainly determined by surface-energy minimization. Results are intriguing, as they reveal the existence of magic sizes, show the presence of very peculiar morphologies, such as micron-long wires, and distinguish among attempts to facet the wetting-layer and true SK islands.  相似文献   

12.
We investigated the initial growth stages of Si(x)Ge(1-x)/Si(001) by real time stress measurements and in situ scanning tunneling microscopy at deposition temperatures, where intermixing effects are still minute (< or =900 K). Whereas Ge/Si(001) is a well known Stranski-Krastanow system, the growth of SiGe alloy films switches to a 3D island mode at Si content above 20%. The obtained islands are small (a few nanometers), are uniform in shape, and exhibit a narrow size distribution, making them promising candidates for future quantum dot devices.  相似文献   

13.
Strain evolution of coherent Ge islands on Si(001) is measured using a newly developed transmission electron microscopy technique based on two-beam dark-field strain imaging. The strain measurements show that a metastable Ge island shape is involved in the shape transition between pyramids and domes; this shape is more readily observed for growth at 550 than 600 degrees C because of the slower rate at which islands cross the kinetic barrier between shapes. The strain relaxation changes discontinuously between pyramids and domes, indicating that the underlying shape transition is first order.  相似文献   

14.
高飞  冯琦  王霆  张建军 《物理学报》2020,(2):256-261
纳米线的定位生长是实现纳米线量子器件寻址和集成的前提.结合自上而下的纳米加工和自下而上的自组装技术,通过分子束外延生长方法,在具有周期性凹槽结构的硅(001)图形衬底上首先低温生长硅锗薄膜然后升温退火,实现了有序锗硅纳米线在凹槽中的定位生长,锗硅纳米线的表面晶面为(105)晶面.详细研究了退火温度、硅锗的比例及图形周期对纳米线形成与否,以及纳米线尺寸的影响.  相似文献   

15.
利用掠入射荧光X射线吸收精细结构(XAFS)方法研究了在400℃的温度下分子束外延生长的Si/Gen/Si(001)异质结薄膜(n=1,2,4和8个原子层)中Ge原子的局域环境结构.结果表明,在1至2个Ge原子层(ML)生长厚度的异质结薄膜中,Ge原子的第一近邻配位主要是Si原子.随着Ge原子层厚度增加到4ML,Ge原子的最近邻配位壳层中的Ge-Ge配位的平均配位数增加到1.3.当Ge原子层厚度增加到8ML时,第一配位壳层中的Ge-Ge配位占的比例只有55%.这表明在400℃的生长条件下,Ge原子有很强的迁移到Si覆盖层的能力.随着Ge层厚度从1 增加到2,4和8ML,Ge原子迁移到Si覆盖层的量由0.5ML分别增加到1.5,2.0和3.0ML.认为在覆盖Si过程中Ge原子的迁移主要是通过产生Ge原子表面偏析来降低表面能和Ge层的应变能. 关键词: XAFS n/Si(001)异质膜')" href="#">Si/Gen/Si(001)异质膜 迁移效应  相似文献   

16.
We present a theory for the shape, size, and nonuniform composition profile of a small prepyramid island in an alloy epitaxial film when surface diffusion is much faster than deposition and bulk diffusion. The predicted composition profile has segregation of the larger misfit component to the island peak, with segregation enhanced by misfit strain and solute strain but retarded by alloy solution thermodynamics. Vertical composition gradients through the center of the island due to this mechanism are on the order of 2%/nm for Ge(X)Si(1-X)/Si and 10-15%/nm for In(X)Ga(1-X)As/GaAs.  相似文献   

17.
The dependence of the photoluminescence spectra of structures with self-assembled GeSi/Si(001) islands on Ge deposition temperature was studied. The position of the island photoluminescence peak maximum was found to shift nonmonotonically with decreasing Ge deposition temperature. The blue shift of the island photoluminescence peak with the growth temperature decreasing from 600 to 550°C is assigned to the change in the island shape occurring in this temperature interval accompanied by a strong decrease in the average island height.  相似文献   

18.
The initial surface roughening during Ge epitaxy on Si(001) is shown to arise from an effective repulsion between S(A) surface steps and dimer vacancy lines (VLs). This step-VL interaction gradually inactivates a substantial fraction of adatom attachment sites at the growth front, causing a rapid increase in the rate of two-dimensional island nucleation. The mutual repulsion hinders the crossing of S(A) surface steps over VLs in the second layer, thus organizing the developing surface roughness into a periodic array of anisotropic 2D terraces. Isolated (105) facets forming at specific sites on this ordered template mediate the assembly of first 3D Ge islands.  相似文献   

19.
We report the growth of Ge islands on Si (001) substrates with lithographically defined two-dimensionally periodic pits using focused ion-beam patterning and molecular beam epitaxy. The formation of circularly ordered Ge islands has been achieved by means of nonuniform strain field around the periphery of the holes due to ion bombardment. Lateral ordering of the Ge islands have been controlled by both the pit size and pit separation. Preferential growth at the pit sites has also been achieved by using appropriate pattern shape and size.  相似文献   

20.
Self-organized Ge islands grown on patterned Si(001) substrates have been investigated. Selective epitaxial growth (SEG) of Si is carried out with gas-source molecular beam epitaxy to form Si stripe mesas followed by subsequent Ge island growth. Self-aligned Ge islands with regular spacing are formed on the <110>-oriented ridges of the Si mesas. The regular spacing is driven by the repulsive interaction between the neighbor islands through the substrates. A mono-modal distribution of the islands has been observed on the ridges of the Si mesas. The spatial confinement as well as the preferential nucleation is believed to be the mechanism of this alignment of the self-organized Ge islands. Received: 16 July 1999 / Accepted: 6 August 1999 / Published online: 24 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号