首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We observe a strong dependence of the amplitude and field position of longitudinal resistivity (ρxx) peaks in the spin-resolved integer quantum Hall regime on the spin orientation of the Landau level (LL) in which the Fermi energy resides. The amplitude of a given peak is maximal when the partially filled LL has the same spin as the lowest LL, and amplitude changes as large as an order of magnitude are observed as the sample is tilted in field. In addition, the field position of both the ρxx peaks and plateau–plateau transitions in the Hall resistance shift depending on the spin orientation of the LLs. The spin dependence of the resistivity points to a new explanation for resistivity spikes, associated with first-order quantum Hall ferromagnetic transitions, that occur at the edges of quantum Hall states.  相似文献   

2.
We explore the extreme quantum limit of photogenerated electrons in quantum paraelectric SrTiO3. This regime is distinct from conventional semiconductors, due to the large electron effective mass and large dielectric constant. At low temperature, the magnetoresistance and Hall resistivity saturate at a high magnetic field, deviating from conventional behavior. As a result, the Hall coefficient vanishes on the scale of the ratio of the Landau level splitting to the thermal energy, indicating the essential role of lowest Landau level occupancy, as limited by thermal broadening.  相似文献   

3.
We report measurements of the quantum Hall state energy gap at avoided crossings between Landau levels originating from different conduction band valleys in AlAs quantum wells. These gaps exhibit an approximately linear dependence on the magnetic field over a wide range of fields and filling factors. More remarkably, we observe an unexpected dependence of the gap size on the relative spin orientation of the crossing levels, with parallel-spin crossings exhibiting larger gaps than antiparallel-spin crossings.  相似文献   

4.
We report a study of spin-related magnetotransport properties of a type II broken-gap heterostructure formed by InAs substrate bulky doped with Mn and δ-Mn-doped GaInAsSb epilayer. Planar and vertical quantum magnetotransport in a 2D-electron-hole system at the single type II broken-gap InAs/GaInAsSb heterointerface was investigated in high magnetic fields under the quantum Hall regime up to 15 T at low temperature (T=1.5 K). The I-V characteristics near the dielectric phase boundary show the step-like behavior that corresponds to the quantum conductance in a disordered 2D structure through the extended edge states of the nearest Landau level closest to the Fermi level. The value of these steps is determined by the orientation of the 2D-electron spin at the Landau level and the magnetic moment of Mn in the δ-layer.  相似文献   

5.
The Hartree-Fock paradigm of bilayer quantum Hall states with finite tunneling at filling factor nu=1 has full pseudospin ferromagnetic order with all the electrons in the lowest symmetric Landau level. Inelastic light scattering measurements of low energy spin excitations reveal major departures from the paradigm at relatively large tunneling gaps. The results indicate the emergence of a novel correlated quantum Hall state at nu=1 characterized by reduced pseudospin order. Marked anomalies occur in spin excitations when pseudospin polarization collapses by application of in-plane magnetic fields.  相似文献   

6.
We investigate the quark matter in a strong magnetic field in the framework of SU(2) NJL model with a magnetic-field-dependent coupling. The spin polarization, the entropy per baryon, and the energy are studied by analyzing the competition of the magnetic effect and the thermal effect. The stronger magnetic field can enhance the spin polarization, arrange quarks in a uniform spin orientation, and change the energy per baryon drastically. However,it can hardly affect the entropy per baryon, which is dominated by the temperature. As the temperature increases, more quarks will be excited from the lowest Landau level up to higher Landau levels.  相似文献   

7.
计青山  郝鸿雁  张存喜  王瑞 《物理学报》2015,64(8):87302-087302
近年来, 硅烯(单层硅)由于其独特的结构和电子性质以及在量子霍尔效应等领域的潜在应用而成为理论和实验研究的一个热点. 借助于四带次近邻紧束缚模型, 详细计算和研究了硅烯中受电场调制的体能隙和电子能级. 结果表明: 硅烯原胞中的两个子格处于不同的平面上, 可以通过外电场区分和控制这两个子格, 这将破坏在纯石墨烯中无法被破坏的K-K'对称性, 并消除由这一对称性导致的电子能级的二重简并; 外加电场还会引起硅烯中次近邻格点之间的Rashba自旋轨道耦合, 这一作用会在不同狄拉克点有选择地消除电子能级在部分电场点的简并, 相邻能级从交叉状态变为反交叉状态; 电子能级中除一些孤立的交叉点外, 每个能级都具有确定的自旋取向, 石墨烯中电子能级的四重简并在硅烯中被完全消除, 从而导致填充因子ν=0, ±1, ±2, ±3,…的量子霍尔平台.  相似文献   

8.
The spin degree of freedom in quantum phases of the second Landau level is probed by resonant light scattering. The long wavelength spin wave, which monitors the degree of spin polarization, is at the Zeeman energy in the fully spin-polarized state at ν = 3. At lower filling factors, the intensity of the Zeeman mode collapses, indicating loss of polarization. A novel continuum of low-lying excitations emerges that dominates near ν = 8/3 and ν = 5/2. Resonant Rayleigh scattering reveals that quantum fluids for ν < 3 break up into robust domain structures. While the state at ν = 5/2 is considered to be fully polarized, these results reveal unprecedented roles for spin degrees of freedom.  相似文献   

9.
A resistively detected NMR technique was used to probe the two-dimensional electron gas in a GaAs/AlGaAs quantum well. The spin-lattice relaxation rate (1/T(1)) was extracted at near complete filling of the first Landau level by electrons. The nuclear spin of (75)As is found to relax much more efficiently with T --> 0 and when a well developed quantum Hall state with R(xx) approximately 0 occurs. The data show a remarkable correlation between the nuclear spin relaxation and localization. This suggests that the magnetic ground state near complete filling of the first Landau level may contain a lattice of topological spin texture, i.e., a Skyrmion crystal.  相似文献   

10.
We consider the oscillating sign of the drag resistivity and its anomalous temperature dependence discovered experimentally in a bilayer system in the regime of the integer quantum Hall effect. We attribute the oscillating sign to the effect of disorder on the relation between an adiabatic momentum transfer to an electron and the displacement of its position. While in the absence of any Landau level mixing a momentum transfer implies a displacement of (with being the magnetic length), Landau level mixing induced by short range disorder adds a potentially large displacement that depends on the electron's energy, with the sign being odd with respect to the distance of that energy from the center of the Landau level. We show how the oscillating sign of drag disappears when the disorder is smooth and when the electronic states are localized.  相似文献   

11.
Measurements of low-lying spin excitations by inelastic light scattering unveil a delicate balance between spin reversal and Fermi energies in the Fermi sea of composite fermions that emerges in the limit of nu --> 1/2. The interplays between these two fundamental quasiparticle interactions are uncovered in lowest spin-flip excitations in which the spin orientation and Landau level index of composite fermions change simultaneously. A collapse of the spin-flip excitation gap as nu --> 1/2 is linked to vanishing quasiparticle energy level spacings and loss of full spin polarization.  相似文献   

12.
Wigner函数在对量子体系状态的描述方面具有重要的意义。 讨论了自旋1/2非对易朗道问题的Wigner函数。首先回顾了对易空间中Wigner函数所服从的星本征方程, 然后给出了非对易相空间中自旋1/2朗道问题的Hamiltonian, 最后利用星本征方程(Moyal 方程)计算了非对易相空间中自旋1/2朗道问题具有矩阵表示形式的Wigner函数及其能级。With great significance in describing the state of quantum system, the Wigner function of the spin half non commutative Landau problem is studied in this paper. On the basis of the review of the Wigner function in the commutative space, which is subject to the *eigenvalue equation, Hamiltonian of the spin half Landau problem in the non commutative phase space is given. Then, energy levels and Wigner functions in the form of a matrix of the spin half Landau problem in the non commutative phase space are obtained by means of the *-eigenvalue equation (or Moyal equation).  相似文献   

13.
We investigate numerically the photoluminescence (PL) spectrum in the integer quantum Hall regime and find that the electron spins play important roles. The spectra for the left circularly polarized light show peak splittings when the Fermi levels lies in the excited Landau level, which is caused by the inter Landau level scattering between electrons with anti-parallel spins. At around νe∼1 the PL energy is strongly affected by the interplay between the screening and multiple spin flipping (skyrmion) effects.  相似文献   

14.
We have realized an AlAs two-dimensional electron system in which electrons occupy conduction-band valleys with different Fermi contours and effective masses. In the quantum Hall regime, we observe both resistivity spikes and persistent gaps at crossings between the Landau levels originating from these two valleys. From the positions of the spikes in tilted magnetic fields and measurements of the energy gaps away from the crossings, we find that, after occupation of the minority valley, the spin susceptibility drops rapidly, and the electrons possess a single interaction-enhanced g-factor, despite the dissimilarity of the two occupied valleys.  相似文献   

15.
采用紧束缚近似方法对锯齿状六边形硼磷烯量子点在平面电场和垂直磁场调控下的电子结构和光学性质进行了研究. 研究表明,硼磷烯量子点作为直接带隙半导体,在无外加电场和磁场作用时,能隙不随尺寸的改变而变化. 在平面电场调控下,能隙随电场强度的增加逐渐减小直至消失,平面电场方向几乎不会对硼磷烯量子点体系产生影响, 且随量子点尺寸的增大,能隙消失所需电场强度逐渐减小. 在垂直磁场调控下,表现为体态的能级在磁场作用下形成朗道能级,而能隙边缘处的朗道能级近似为一个平带,不随磁通量的改变而变化,态密度主要分布于朗道能级处. 另外,垂直磁场作用下的光吸收主要是由朗道能级之间的跃迁引起的.  相似文献   

16.
The photoconductivity of GaAs in the energy range 1.5 –1.8 eV at 4.2 K exhibits two types of quantum oscillations: Landau oscillations for epitaxial material in high magnetic fields or LO phonon oscillations for high resistivity material. The purity and surface treatment of the samples seem to determine the type of oscillations observed.  相似文献   

17.
Recent magneto-transport experiments on ultra-high mobility 2D electron systems in GaAs/AlGaAs heterostructures have revealed the existence of whole new classes of correlated many-electron states in highly excited Landau levels. These new states, which appear only at extremely low temperatures, are distinctly different from the familiar fractional quantum Hall liquids of the lowest Landau level. Prominent among the recent findings are the discoveries of giant anisotropies in the resistivity near half-filling of the third and higher Landau levels and the observation of re-entrant integer quantum Hall states in the flanks of these same levels. This contribution will survey the present status of this emerging field.  相似文献   

18.
We investigate the quantum Hall (QH) states near the charge-neutral Dirac point of a high mobility graphene sample in high magnetic fields. We find that the QH states at filling factors nu=+/-1 depend only on the perpendicular component of the field with respect to the graphene plane, indicating that they are not spin related. A nonlinear magnetic field dependence of the activation energy gap at filling factor nu=1 suggests a many-body origin. We therefore propose that the nu=0 and +/-1 states arise from the lifting of the spin and sublattice degeneracy of the n=0 Landau level, respectively.  相似文献   

19.
The hole dynamics and emission processes in degenerate band semiconductors in strong crossedE B fields were studied both theoretically and experimentally. The Luttinger effective mass Hamiltonian was used to study the Landau level energy spectrum in anisotropic valence bands of Ge. The dependence of the energy spectrum onE,H fields orientation is analysed. The role of quantum effects, such as interaction and mixing of light and heavy hole states in the scattering process and Landau level population is studied. The results of experimental studies of stimulated emission spectra for intersub-band and cyclotron transitions as well as their dependence onE,H field orientation are presented, the experimental data being in good agreement with the quantum model calculations.  相似文献   

20.
We present an experimental study of mesoscopic, two-dimensional electronic systems at high magnetic fields. Our samples, prepared from a low-mobility InGaAs/InAlAs wafer, exhibit reproducible, sample specific, resistance fluctuations. Focusing on the lowest Landau level, we find that, while the diagonal resistivity displays strong fluctuations, the Hall resistivity is free of fluctuations and remains quantized at its nu=1 value, h/e(2). This is true also in the insulating phase that terminates the quantum Hall series. These results extend the validity of the semicircle law of conductivity in the quantum Hall effect to the mesoscopic regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号