首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The linoleic acid (LA)-grafted chitosan oligosaccharide (CSO) (CSO-LA) was synthesized in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and the effects of molecular weight of CSO and the charged amount of LA on the physicochemical properties of CSO-LA were investigated, such as CMC, graft ratio, size, zeta potential. The results showed that these chitosan derivatives were able to self-assemble and form spherical shape polymeric micelles with the size range of 150.7–213.9 nm and the zeta potential range of 57.9–79.9 mV, depending on molecular weight of CSO and the charged amount of LA. Using doxorubicin (DOX) as a model drug, the DOX-loaded CSO-LA micelles were prepared by dialysis method. The drug encapsulation efficiencies (EE) of DOX-loaded CSO-LA micelles were as high as about 75%. The sizes of DOX-loaded CSO-LA micelles with 20% charged DOX (relating the mass of CSO-LA) were near 200 nm, and the drug loading (DL) capacity could reach up to 15%. The in vitro release studies indicated that the drug release from the DOX-loaded CSO-LA micelles was reduced with increasing the graft ratio of CSO-LA, due to the enhanced hydrophobic interaction between hydrophobic drug and hydrophobic segments of CSO-LA. Moreover, the drug release rate from CSO-LA micelles was faster with the drug loading. These data suggested the possible utilization of the amphiphilic micellar chitosan derivatives as carriers for hydrophobic drugs for improving their delivery and release properties.  相似文献   

2.
Summary: The amphiphilic derivatives of chitosan, (2-hydroxyl-3-butoxyl)-propylcarboxymethyl-chitosan (HBP-CMCHS), can form micelles with the inner core of hydrophobic segments and the outer shell of hydrophilic segments. The typical poor water-soluble drug silymarin was solubilized in the HBP-CMCHS micellar by physical entrapped method. Results showed that the solubilizing capacity was enhanced by increasing the concentration of HBP-CMCHS with the same dosage of silymarin. Silymarin-loaded micellar system of HBP-CMCHS was characterized by TEM and DLS. TEM photograph revealed that the micelles were spherical and silymarin was solubilized in the cores of the spherical polymeric micelles. DLS showed that after solubilization the size of the micelles became bigger. In vitro tests showed that silymarin was slowly released from micellar solution and the release lasted up to 40 h by means of the dialysis method.  相似文献   

3.
In this study, water-in-oil (W/O) miniemulsion was used as nanoreactor to prepare solid lipid nanoparticles (SLN) by solvent diffusion method. n-Hexane, Tween 80 and Span 80 were used as the oil phase and surfactant combination for preparation of W/O miniemulsion, respectively. The stable miniemulsion with the particle size of 27.1 ± 7.6 nm was obtained when the composition of water/Tween 80/Span 80/n-hexane was 1 ml/18 mg/200 mg/10 ml. Clobetasol propionate (CP) was used as a model drug. The physicochemical properties of the SLN, such as particle size, zeta potential, surface morphology, drug entrapment efficiency, drug loading capacity and in vitro drug release behaviors were investigated, comparing with those of SLN prepared by conventional aqueoethod. The SLN prepared by the novel method displayed smaller particles size and higher dus solvent diffusion mrug entrapment efficiency than those of SLN prepared by the conventional method. The drug entrapment efficiency decreased with increasing of charged amount of drug, and 15.9% of drug loading was achieved as the charged amount of drug was 20%. The in vitro drug release tests indicated that the drug release rate was faster than that of SLN prepared by the conventional method, and the drug content in SLN did not affect the in vitro drug release profile.  相似文献   

4.
The effect of lanthanum on mitochondria isolated from hybrid rice Fengyou 559 (Oryza sativa L.) was investigated. Through in vivo culture, low-dose La3+ promoted, but higher dose La3+, restrained mitochondrial heat production. However, through in vitro incubation, La3+ manifested only inhibitory action on mitochondrial energy turnover, the concentration required for 50% and 100% inhibition being 50.9 and 230.2 μM (57.6 nmol/mg protein), respectively. In addition, La3+, like Ca2+, induced rice mitochondrial swelling and decreased membrane potential (Δψ), which was inhibited by the specific permeability transition inhibitor cyclosporine A (CsA). The induction approached a constant limitation while mitochondrial metabolism was completely prevented by La3+, and microscopy observation showed a high disruption of inner mitochondrial membrane in this state. These results demonstrated that lanthanum influenced rice mitochondria in vivo and in vitro via different action pathways, and the latter involved the opening of rice mitochondrial permeability.  相似文献   

5.
N-Succinyl-N′-octyl chitosan (SOC) was prepared and characterized by elemental analysis, FTIR, 1H NMR, WAXD and TG. An anticancer drug, doxorubicin (DOX), was incorporated into polymeric micelles forming by SOC in aqueous solutions. Critical micelle concentrations (CMC) of SOC were determined by fluorescence spectroscopy. The DOX-loaded SOC micelles were characterized by measurement of size and drug loading. The loading content of DOX increased with increasing drug-to-carrier ratio, and the more amount of the octyl chain, the higher the drug loading content. The average size, which was affected by the amount of octyl chain and drug loading content, was in the range of 100–200 nm. The polymeric micelles containing doxorubicin in the core region exhibited a sustained release and more cytotoxic activity against HepG2, A549, BGC and K562 than doxorubicin alone, this can be attributed to an endocytosis mechanism rather than passive diffusion.  相似文献   

6.
A kind of amphiphilic derivatives of chitosan (2-hydroxyl-3-butoxyl)-propylcarboxymethyl-chitosan (HBP-CMCHS), has been synthesized, and the critical micelle concentration (cmc) of HBP-CMCHS was detected by the fluorescence method. The puerarin-loaded HBP-CMCHS micellar system was prepared by physical entrapped method. Result showed that when adding the same amount of puerarin, the solubilizing capacity was enhanced by increasing the concentration of HBP-CMCHS and temperature. Puerarin-loaded micellar system of HBP-CMCHS was characterized by TEM and DLS. TEM photograph revealed that the micelles were spherical and puerarin was solubilized in the cores of the spherical polymeric micelles. DLS showed that after solubilization the size of the micelles became bigger. In vitro tests showed that puerarin was slowly released from micellar solution and the release lasted up to 60 h by means of the dialysis method.  相似文献   

7.
利用活性拼接原理, 将喹喔啉引入到杨梅素结构中, 合成了一系列含喹喔啉基团的杨梅素新型衍生物. 采用浊度法测试了目标化合物的体外抑菌活性, 结果表明, 目标化合物对柑橘溃疡病菌(X. Citri)和水稻白叶枯病菌(X. Oryzae)均表现出较好的抑制活性. 目标化合物对柑橘溃疡病菌的抑制活性(EC50)均优于对照药叶枯唑和噻菌铜(EC50分别为54.85和61.13 μg/mL), 其中化合物4o抑制活性(EC50=11.17 μg/mL)最优; 目标化合物对水稻白叶枯病菌的抑制活性EC50均优于对照药叶枯唑和噻菌铜(EC50分别为148.20和175.47 μg/mL), 其中化合物4f抑制活性(EC50=34.49 μg/mL)最优. 采用半叶枯斑法测试了目标化合物的抗烟草花叶病毒(TMV)活性, 结果表明, 所有目标化合物在浓度为500 mg/L时均有一定的抑制作用.  相似文献   

8.
采用剥离-共组装法制备了电中性疏水药物葫芦素(CA)插层类水滑石(HTlc)纳米杂化物. 先用胆酸钠(Ch)包覆修饰葫芦素, 再与剥离的HTlc薄片共组装, 形成CA-Ch-HTlc纳米杂化物. 采用小角X射线散射、 傅里叶变换红外吸收光谱、 透射和扫描电子显微镜、 Zeta电位和元素分析等技术对样品进行了表征. 所制备纳米杂化物的载药量达到7.06%, 表明该方法可以实现电中性疏水药物在HTlc上的有效负载. 依据胆酸离子和葫芦素尺寸及纳米杂化物通道高度推测, 胆酸离子在HTlc层间为双层排列, 其长轴几乎垂直于HTlc层板; 葫芦素分子插入(或“溶入”)胆酸离子双层中. CA-Ch-HTlc纳米杂化物具有良好的药物缓释效果, 其药物释放过程符合准二级动力学方程.  相似文献   

9.
以壳寡糖为原料,采用一锅法合成壳寡糖氨基硫脲,然后再与吡啶甲醛经缩合反应合成壳寡糖氨基硫脲席夫碱,最后与铜离子发生配位反应合成目标化合物壳寡糖氨基硫脲席夫碱铜。 采用红外光谱仪(FTIR)、紫外可见光谱仪(UV-Vis)、核磁共振波谱仪(NMR)、电感耦合等离子体质谱仪(ICP-MS)和热重-差热分析(TG-DTA)对壳寡糖衍生物进行结构表征。 同时采用体外菌丝生长速率法测定壳寡糖及其衍生物对辣椒疫霉菌、烟草黑胫菌、禾谷镰刀菌的体外抗真菌活性。 结果表明,壳寡糖氨基硫脲席夫碱铜质量浓度为1.0 g/L时,对辣椒疫霉、烟草黑胫、禾谷镰刀菌的抑菌率分别为74.19%、56.60%和66.60%,均优于壳寡糖。  相似文献   

10.
采用“药物修饰-共组装”法制备了(羟基喜树碱@胆酸钠)-层状双金属氢氧化物纳米杂化物. 先用胆酸钠(SCL)包裹羟基喜树碱(HCPT)形成胶束, 再与微反应器制备的层状双氢氧化物(LDH)纳米片共组装形成纳米杂化物, 其载药量可达12.9%, 杂化物中HCPT以高生物活性的内酯形式存在. 采用聚乙二醇(PEG)和羧甲基纤维素(CMC)分别对所制备的(HCPT@SCL)-LDH纳米杂化物进行了表面修饰, 结果表明, 纳米杂化物的分散性得到明显改善; PEG的修饰效果优于CMC, 所获得的PEG-(HCPT@SCL)-LDH杂化物的平均粒径可小至约70 nm, 具有良好的分散性和药物缓释效果. 其药物释放过程可用准二级动力学方程描述, 颗粒内部扩散是药物释放过程的控制步骤.  相似文献   

11.
Bacteriochlorophyll-a (bChla), which absorbs light of 780 nm wavelength, was tested for in vivo photodynamic activity in the SMT-F and RIF transplantable mouse tumor systems. High performance liquid chromatography (HPLC) analysis of tissue extracts showed that bChla was rapidly degraded in vivo to bacteriopheophytin-a (bPheoa) and other breakdown products. These were also photodynamically active, and tumor response could be achieved over a wavelength range of 660 to 780 nm, while tumor cure was restricted to wavelengths of 755 (bPheoa) to 780 nm. A photosensitizing product absorbing at 660 nm was also present in isolated tumor cells. Photodynamic cell kill of tumor cells isolated from tumors after bChla accumulation in vivo, using 755 or 780 nm light vitro, was exponential up to 20–40 J cm−2. Above this light dose little or no further damage could be achieved, which is an indication of the rapid photobleaching of these sensitizers. In vivo, vascular occlusion occurred readily if light treatment was delivered shortly after sensitizer administration, but was delayed if light treatment was carried out 24 h after injection. Although up to 70% of tumor cells were lethally damaged after completion of in vivo light treatment, concurrent severe vascular destruction seemed necessary for tumor cure. Normal tissue photosensitivity totally subsided within 5 days after sensitizer administration.  相似文献   

12.
Core-shell nanoparticles of Au@silica with a diameter of approximate 45–60 nm and wall thickness in range of 3–10 nm were synthesized by using 40 and 50 nm gold nanoparticles as the templates. The mesoporous particles are regulated by 3-aminopropyltrimethoxysilane addition. Hollow mesoporous silica nanocapsules (HMSNs) were prepared by using sodium cyanide to dissolve the gold cores. The characterization of Au@silica and HMSNs by transmission electronic microscope indicated that the silica shells were uniform and smooth, and also the porosity was proved by fluorescein isothiocyanate (FITC) release experiments. The ratio of hollow core to HMSNs is more than 70%. HMSNs were subsequently used as drug carrier to investigate FITC (as a model drug) release behaviors in vitro. Fluorescent spectrometry was performed to determine the release kinetics from the HMSNs. The release profiles are significantly different as compared with the control (free FITC), which show that HMSNs are good drug carriers to control drug release, and have high potential in therapeutic drugs delivery in future applications.  相似文献   

13.
A series of lanosterol and cholesterol derivatives with modified side chain structures, which might interfere with sterol C24-methyltransferase in the ergosterol biosynthesis as substrate analogs, have been synthesized. The in vitro bioassay studies have shown that some of these compounds, in particular with C24-amino- and thio-functionalities, possess potent antifungal activities, in vivo. Bioassays have also been carried out for the leading compounds.  相似文献   

14.
齐延新  黄宇彬  金宁一 《应用化学》2020,37(11):1340-1342
为了制备可缓释释放的黄体酮纳米胶束新剂型,构建了两嵌段聚合物载体聚乙二醇-聚丙烯基缩水甘油醚(PEG-PAGE),组装成胶束,对黄体酮担载,考察不同条件下的载药量和包封率,筛选出最佳比例,并进行体外释放研究。 结果表明,该胶束能够担载黄体酮,载药量为4.26%,包封率为21.30%,48 h内累计释放达61.31%,能够有效地延缓黄体酮的释放,为黄体酮纳米剂型的开发提供了实验和技术参考。  相似文献   

15.
在离子液体均相体系中合成了一种新型两亲性窄分子量分布的低聚壳聚糖衍生物月桂基-琥珀酰化壳聚糖(LSCOS). 以LSCOS为载体材料, 以牛血清蛋白(BSA)为模板蛋白, 以戊二醛为交联剂, 用油包水(W/O)乳化交联法制备了包载BSA的BSA/LSCOS缓释载药微球. 通过扫描电子显微镜(SEM)、 透射电子显微镜(TEM)及紫外-可见光谱(UV-Vis)研究了BSA/LSCOS比率和戊二醛/LSCOS比率对微球的形貌结构、 包埋率、 载药率和体外药物释放特性的影响. 结果表明, 在离子液体中合成的LSCOS包覆了BSA, 形成的微球粒径约为1 μm, 微球表面随BSA用量的增加变得光滑, 随戊二醛用量的增加变得粗糙. BSA的累积释放率与BSA包载量成正比, 与交联剂添加量成反比, 因此, 可通过控制蛋白质药物的添加比率和交联剂用量来控制蛋白质药物体外释放率.  相似文献   

16.
以聚(ε-己内酯-b-L-丙交酯)/聚乙二醇单甲醚(P(CL-b-LLA)-b-mPEG)和聚(ε-己内酯-b-D,L-丙交酯)/聚乙二醇单甲醚(P(CL-b-DLLA)-b-mPEG)两种两亲嵌段共聚物为载体,选择了物理状态完全不同、而疏水性相近的吲哚美辛和维生素E为模型药物,研究了药物包载对高分子胶束形态的影响.发现两种药物在高分子胶束内部的增溶均会导致胶束形态发生显著改变,变化行为与胶束内核的结晶性和药物疏水性有关.另外,还研究了两种嵌段共聚物的载药性能,发现非结晶性疏水内核共聚物的药物包载率明显大于可结晶疏水内核的共聚物.  相似文献   

17.
以Maillard反应制备的牛血清白蛋白-葡聚糖共价接枝物作为载体, 通过调节混合溶液的pH值和温度制备负载阿霉素的白蛋白-葡聚糖纳米粒子. 利用分子量为5×103, 10×103和62×103的葡聚糖制备了多种共价接枝物, 研究了共价接枝物分子量对载药纳米粒子的粒径和稳定性及载药量的影响. 用短链葡聚糖(分子量5×103和10×103)制备的纳米粒子粒径为60 nm左右, 用长链葡聚糖(分子量62×103)制备的纳米粒子粒径约为200 nm; 阿霉素的包埋效率为81%~98%, 包埋量为7.4%~16.9%. 细胞实验结果表明, 共价接枝物具有很好的生物相容性; 与自由阿霉素相比, 纳米粒子可以促进阿霉素进入人口腔上皮癌细胞; 受缓释性质的影响, 纳米粒子在低浓度时的细胞毒性要小于自由阿霉素. 与长链葡聚糖纳米粒子相比, 接枝度高的短链葡聚糖纳米粒子由于具有较小的粒径、 密集的葡聚糖分子刷表面、 一定的自由阿霉素浓度和较快的阿霉素释放速率, 因而更容易进入细胞并具有更好的体外抗肿瘤活性.  相似文献   

18.
癌症的光子疗法是一种选择性治疗新技术,近几年得到迅猛的发展,该疗法拥有创伤小、选择性好且毒性低、无耐药性等优点。 我们采用水热合成法制备了一种新型的层状钴铁双氢氧化物纳米片(Co-Fe-LDH),利用其具有较大比表面积、稳定高、生物相容性好等的特点,负载光敏剂IR783(LDH-IR783),在近红外激光的刺激下实现癌症的光热光动力协同光治疗。 对所合成的Co-Fe-LDH进行了组成、形貌、光学性质、活性氧(ROS)生成、热量释放等表征,并在细胞及活体水平进行抗癌测试。 实验结果表明,所制备的纳米复合物具有稳定的结构、高IR783负载率以及良好的分散性,并且,在近红外光源照射下表现出优异的光热/光动力效应,能够快速产生大量的活性氧,迅速地释放热量,产生显著的光毒性,能够有效地诱导HeLa细胞的凋亡。 体内抗癌实验表明,所制备的纳米复合物有效地抑制了实体肿瘤的生长,并且未对正常组织产生明显的损伤,毒副作用较低。 这些初步结果将为光热/光动力协同纳米粒子的设计和应用提供新的思路。  相似文献   

19.
A series of amphiphilic macromolecules, amphiphilic scorpion-like macromolecules (AScMs) and amphiphilic star-like macromolecules (ASMs), were evaluated as potential drug delivery systems for intravenous administration. AScMs aggregate to form polymeric micelles; whereas the ASMs have a covalently bound core structure and behave as unimolecular micelles. Four structurally different AScMs and two ASMs were selected for further evaluation focusing on micellar stability and biocompatibility. AScMs were determined to have extremely low cmc values, indicating excellent thermodynamic stability compared to other polymeric micelle systems. Particle sizes of the AScM polymeric micelles and ASM unimolecular micelles were between 10 and 20 nm, and remained constant for up to 3 weeks storages as aqueous solutions at room temperature (approximately 23 degrees C) and 37 degrees C. The dissociation kinetics of the AScM polymeric micelles were slowed relative to small molecule surfactant micelles, again indicating enhanced kinetic stability. With respect to hemolytic activity, AScMs with longer acyl chains were hemolytic; whereas the ASMs had minimal hemolytic activity due to the covalently bound structure. Both ASM unimolecular micelles and AScM polymeric micelles have excellent micellar stability, but the ASMs are more suitable as injectable drug delivery systems due to their low hemolytic activity.  相似文献   

20.
Block copolymer micelles find application in many fields as nanocarriers, especially in drug delivery. We report herein that specific interactions between hydrophobic guest molecules and core-forming segments can significantly improve the loading capacity of polymeric micelles. High loading capacities (>100% weight/weight of polymer (w/wp)) were systematically observed for the encapsulation of probes containing weak carboxylic acid groups by micellar nanoparticles having poly[2-(dialkylamino)ethyl methacrylate] cores (i.e., particles whose cargo space exhibits antagonist weak base functions), as demonstrated by the incorporation of indomethacin (IND), ibuprofen (IBPF), and trans-3,5-bis(trifluoromethyl)cinnamic acid (F-CIN) into either poly(ethylene oxide)-b-poly[2-(diisopropylamino)ethyl methacrylate] (PEO-b-PDPA) or poly(glycerol monomethacrylate)-b-PDPA (PG2MA-b-PDPA) micelles. The esterification of IND yielding to a nonionizable IND ethyl ester derivative (IND-Et) caused an abrupt decrease in the micellar loading capacity down to 10-15% w/wp. Similar results were also obtained when IND was combined with nonionizable block copolymers such as PEO-b-polycaprolactone (PEO-b-PCL) and PEO-b-poly(glycidyl methacrylate) (PEO-b-PGMA). The existence of acid-base interactions between the solubilizate and the weak polybase block forming the micelle core was confirmed by 1H NMR measurements. However, the incorporation of high numbers of hydrophobic guest molecules inside polymeric micelles can provoke not only an increase in the hydrodynamic size (2RH) of the objects but also a substantial change in the morphology (transition from spheres to cylinders). The application of the Higuchi model showed that the probe release followed a diffusion-controlled mechanism, and diffusion coefficients (D) on the order of 10-18-10-17 cm2/s were determined for IND release from 1.0 mg/mL PEO113-b-PDPA50 + 100% w/wp IND. Probe release from micelles with weak polybase-based cores can also be triggered by changes in the solution pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号