首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

2.
Temperature dependences of the electrical conductivity of thin vanadium sesquioxide V2O3 films obtained by using the laser sputtering technique have been studied. A significant decrease (by four–five orders of magnitude) in the electrical conductivity has been observed below 150 K as a result of a metal–insulator phase transition. It is shown that hydrogenation of films lowers the temperature of this phase transition.  相似文献   

3.
The structural and the thermodynamic properties of potassium nitrate KNO3 and its composites with nanosized aluminum oxide Al2O3 have been studied by differential scanning calorimetry. It has been found that an amorphous phase forms in composites (1–x)KNO3–xAl2O3. The thermal effect corresponding to this phase has been observed at 316°C. It has been found that the phase transition heats of potassium nitrate decreased as the aluminum oxide fraction increased.  相似文献   

4.
Theoretical investigations of adsorption of 3d-metals from Ti to Cu on the α-Al2O3 (0001) surface are presented. The influence of adsorbates on the atomic and electronic structure of the aluminum oxide surface is considered. Values of the adsorption energy are calculated, and the equilibrium adatom positions on the surface are determined. A comparative analysis of the properties and mechanisms of 3d-metal interaction with atoms of the substrate is performed.  相似文献   

5.
The influence of interaction between anisotropic γ-Fe2O3 nanoparticles on their coercive force H c is studied. In samples where the degree of homogenization of anisotropic γ-Fe2O3 nanoparticles is high owing to mechanical, ultrasonic, and magnetic dispersion with subsequent filtering of resulting suspensions, H c is almost independent of volume concentration η of the particles when η varies between 4 × 10−4 and 10−1. In samples homogenized only mechanically, the H c versus logη dependence is linear.  相似文献   

6.
The ferroelectric and polarization fatigue characteristics of Pb1-xCax(Zr0.52Ti0.48)O3 (PCZT) thin films prepared using the sol–gel method were studied. The Ca-doping slightly suppresses the ferroelectricity of Pb(Zr0.52Ti0.48)O3 (PZT) because of the quantum paraelectric behavior of CaTiO3. Compared with PZT thin films, the PCZT (x=0.2) thin films show enhanced fatigue resistance at room temperature, further emphasized by the almost fatigue-free behavior at 100 K. The temperature-dependent dc-conductivity suggests a decrease of the oxygen vacancy density by almost 20 times and a slightly declined activation energy U for oxygen vacancies, upon increasing of the Ca-doping content from 0.0 to 0.2. It is argued that the improved fatigue endurance is ascribed to the decreasing density of oxygen vacancies due to the Ca-doping, although the lowered activation energy of oxygen vacancies is unfavorable. PACS 77.84.Dy; 66.30.-h; 68.35.Fx  相似文献   

7.
Composite solid electrolytes in the system (1???x)Li2CO3xAl2O3, with x?=?0.0–0.5 (mole), were synthesized by a sol–gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy-dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed an amorphous feature of Li2CO3 and traces of α-LiAlO2, γ-LiAlO2 and LiAl5O8. The prepared composite samples possess high ionic conductivities at 130–180 °C on account of the presence of lithium aluminates as well as the formation of a high concentration of an amorphous phase of Li2CO3 via this sol–gel preparative technique.  相似文献   

8.
CdS/α-Fe2O3 hierarchical nanostructures, where the CdS nanorods grow irregularly on the side surface of α-Fe2O3 nanorods, were synthesized via a three-step process. The diameters and lengths of CdS nanorods can be tuned by changing the ethylenediamine (EDA) and Cd ion concentrations. The magnetic investigations by superconducting quantum interference device indicate that the hierarchical nanostructures have an Morin transition at lower temperature (230 K) than that of the single bulk α-Fe2O3 materials (263 K). Importantly, the hierarchical nanostructures exhibit weakly ferromagnetic characteristics at 300 K. A sharp peak assigned to the surface trap induced emission are observed in room temperature PL spectra. Combining with the optoelectronic properties of CdS, the CdS/α-Fe2O3 hierarchical nanostructures may be used as multi-functional materials for optoelectronic and magnetic devices. Supported by the National Natural Science Foundation of China (Grant Nos. 50772025 and 50872159), the Ministry of Science and Technology of China (Grant No. 2008DFR20420), the China Postdoctoral Science Foundation (Grant Nos. 20060400042 and 200801044), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F200828), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070217002), and the Innovation Foundation of Harbin City (Grant No. RC2006QN017016)  相似文献   

9.
Polycrystalline cubic Li7La3Zr2O12 (LLZ) with garnet-related type structure has been synthesized at 700 °C by modified sol–gel processes using citric acid as organic complexing agent and butan-1-ol or propan-2-ol as surface active agent. Thermal analysis (thermogravimetric/differential thermal analysis) indicated that the gel must be annealed at around 700 °C to completely remove the organic solvent. X-ray powder diffraction, X-ray fluorescence, and scanning electron microscopic investigations revealed that Al may not be essential to form cubic-phase LLZ; however, the addition of Al2O3 led to enhanced sintering of LLZ.  相似文献   

10.
The atomic and electronic structures of the Nb/α-Al2O3 interface are studied by the electron density functional method. The structural and electronic properties of three corundum surfaces, as well as chemical bonds produced by metallic niobium films at variously oriented interfaces, are discussed. Relations between the electronic structure, geometry, and mechanical properties of the interfaces are analyzed. It is shown that the adhesion of niobium films to a great extent depends on the type of oxide surface.  相似文献   

11.
Colloidal suspensions of AuxPd1-x nanoalloys were prepared via hydrazine co-reduction of [AuCl4]? and [PdCl4]2? complex anions in aqueous solution. High molecular weight polymeric compounds polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and cryptoionic surfactants (AF-6 and AF-12 neonols, Triton X-100) were used as surface capping agents. Nanoparticles prepared under different experimental conditions were immobilized on γ-Al2O3 supports. The removal of the capping agents from the surface of the active particles was achieved through calcination of samples in oxidative atmosphere (air, 500 °C). This pretreatment of the catalysts significantly enhances their performance. Powder XRD, TEM, and EDX were employed to characterize the structure, size, and composition of the AuxPd1-x/γ-Al2O3 catalysts. The immobilized particles consist of uniformly mixed alloys having multi-domain face-centered cubic structure with typical crystallite size of 3–6 nm. The activity of the prepared samples was examined with temperature-programmed CO oxidation reaction (TP-CO+O2). Triton X-100 surfactant is superior in a number of parameters. Among all AuxPd1-x/γ-Al2O3 catalysts tested, the one stabilized with Triton X-100 (0.4%Au-0.2%Pd@Triton X-100) was found to have the highest activity for conversion of CO into CO2.  相似文献   

12.
-Fe2O3 particles with an average size of 10 nm were prepared by heating the precipitates obtained from a homogeneous solution of stearic acid and hydrated iron (III) nitrate. The compositional and thermal characteristics of the precipitates were studied with the aid of Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). Presence of -Fe2O3 nanoparticles in the heat treated product was established by X-ray diffraction (XRD) investigations. The average particle size was estimated from the XRD patterns by single line profile analysis and directly from transmission electron microscopic (TEM) images. Kinetic analysis of the calorimetric data revealed that nucleation and growth type kinetic law remain operative during the process and the activation energy of the process is 115 kJ/mol.  相似文献   

13.
The temperature dependence of the critical current of YBa2Cu3O7?δ films is studied experimentally. The performed analysis allows separating two components of the critical current owing to pinning of vortices both on defects in the volume of the superconductor and on oxygen vacancies in the CuO2 planes. The established temperature dependences of components make it possible to correctly describe the behavior of the total critical current in the studied temperature range from 4.2 K to the irreversibility temperature.  相似文献   

14.
The temperature dependences of the quenching rate constants of the states N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}}${\rm C} \ {^{3}{ \rm \Pi }_{u}} v=0,1) by N2 (X) and of the state N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0) by O2 (X) are studied. Time-resolved light emission from the gas was analyzed in the temperature range from 300 K to 210 K keeping the gas at constant density. In case of quenching by N2 (X), the quenching rate constant for the vibrational level v= 0 increases by (13 ±3)% with gas cooling whereas the quenching rate constant for v= 1 decreases by (5.0 ±2.5)% in this temperature range. For quenching by O2 (X), the quenching rate constant decreases by (3 ±2)% with gas cooling. The temperature variation of the N2 (C 3Πu v=0) emission intensity for pure nitrogen and dry air are calculated using the obtained quenching rate constants and is compared with the experimental data available in the literature.  相似文献   

15.
We performed scanning tunneling microscopy and spectroscopy on untwinned crystals of underdoped YBa2Cu3O7- δ at δ = 0.4. A comprehensive statistical analysis of our topographic data indicates a doping dependent cleaving behavior of this material. We find in particular that at δ = 0.4 the material primarily cleaves in multiples of one unit cell along the c-axis with a high corrugation of the topmost layer. Our data suggest that the low temperature cleaving mainly results in a disruption of the CuO chain layers involving a redistribution of the layer atoms onto the two cleaving planes. In a few instances, fractional step heights (in terms of the c-axis lattice constant) are observed as well. Scanning tunneling spectroscopy reveals that such fractional steps connect surfaces which differ significantly in their tunneling conductance.  相似文献   

16.
This work investigates pulsed laser ablation for Ga2O3 nanoparticles. Nanoparticles with diameters of 10 to 500 nm were deposited on silicon substrates in large quantities, by KrF excimer laser ablation of a GaN (99.99% purity) target in high purity nitrogen (99.9995%) background gas at room temperature, without a catalyst. The particle size and phase structure of the as-deposited nanoparticles are examined by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), and selected-area electron diffraction (SAD). FE-SEM images show that the nanoparticles aggregate to form micron-size nanoclusters at chamber pressures of 1 and 5 Torr. On the other hand, nanoparticles aggregate with chain-like nanostructures, are synthesized at high chamber pressures (10 Torr). TEM images further reveal that chain-like nanostructures are formed by the aggregation of individual spherical and ellipsoidal nanoparticles. Photoluminescence measurement shows stable and broad blue emission at 445 nm. PACS 81.20.-N; 81.15.Fg; 75.50.Vv  相似文献   

17.
18.
The reflectivity spectra and the magnetorefractive effect (MRE) of (Co50Fe50)x(Al2O3)1?x metal-dielectric granular films (0.07<x<0.52) are analyzed in the IR spectral range λ=2.5–25 µm. It is revealed that the specific features observed in the spectra at λ≈8.5 and 20 µm are associated with the excitation of phonon modes in the dielectric matrix. The magnetorefractive effect in the films is observed below the percolation thresh-old only in p-polarized light and above the percolation threshold for both the p and s polarizations. It is demonstrated that the optical properties of (Co50Fe50)x(Al2O3)1?x films in the IR spectral range, to a first approximation, can be interpreted in the framework of the effective-medium theory and the magnetorefractive effect can be explained in terms of the modified Hagen-Rubens relation.  相似文献   

19.
A series of glasses [(TeO2) x (B2O3)1−x ]1−y [Ag2O] y with x = 70 and y = 10, 15, 20, 25 and 30 mol% were synthesised by rapid quenching. Longitudinal and shear ultrasonic velocity were measured at room temperature and at 5 MHz frequency. Elastic properties, Poisson's ratio, microhardness, softening temperature and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses and the role of the Ag2O inside the glass network is discussed. Estimated parameters based on Makishima–Mackenzie theory and bond compression model were calculated in order to analyse the experimental elastic moduli. Comparison between the experimental elastic moduli data obtained in the study and the calculated theoretically by the mentioned above models has been discussed.  相似文献   

20.
Spin–lattice relaxation of 3Не in contact with the ordered Al2O3 fiber aerogel has been studied at the temperature of 1.6 K in fields of 0.1–0.5 T by the pulsed nuclear magnetic resonance (NMR) method. An additional mechanism of the relaxation of 3Не in aerogels is found and it is shown that this relaxation mechanism is not associated with the adsorbed layer. A hypothesis about the influence of intrinsic paramagnetic centers on the relaxation of gaseous 3Не is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号