首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
Abstract— Nondividing human fibroblasts are inactivated by radiation from a source (a Westinghouse sun lamp) that simulates the UV spectrum of sunlight. Survival curves determined for a DNA excision repair-proficient and a repair-deficient strain (XP12BE) are related to those determined using germicidal light (254 nm) by constant fluence modification factors. In addition, the same fraction of XP12BE cells are killed per pyrimidine dimer by 254 nm and sun lamp light. These results, when related to other survival and photoreactivation studies, suggest that the mechanism for inactivation of nondividing human cells by sun lamp light is the same as that by 254 nm and that pyrimidine dimers are the major responsible photolesion. Repair reverses some of the lethal effects of this light. We suggest that these conclusions apply to sunlight-irradiated skin cells in vivo.  相似文献   

2.
—Action spectra for UV-induced lethality as measured by colony forming ability were determined both for a normal human skin fibroblast strain (lBR) and for an excision deficient xeroderma pigmentosum strain (XP4LO) assigned to complementation group A using 7 monochromatic wavelengths in the range 254-365 nm. The relative sensitivity of the XP strain compared to the normal skin fibroblasts shows a marked decrease at wavelengths longer than 313 nm. changing from a ratio of about 20 at the shorter wavelengths to just greater than 1.0 at the longer wavelengths. The action spectra thus indicate that the influence on cell inactivation of the DNA repair defect associated with XP cells is decreased and almost reaches zero at longer UV wavelengths. This would occur, for example, if the importance of pyrimidine dimers as the lethal lesion decreased with increasing wavelength. In common with other studies both in bacterial and mammalian cells, our results are consistent with pyrimidine dimers induced in DNA being the major lethal lesion in both cell strains over the wavelength range 254-313 nm. However, it is indicated that different mechanisms of inactivation operate at wavelengths longer than 313 nm.  相似文献   

3.
Abstract The rate of excision of sunlight-induced pyrimidine dimers in DNA of exposed human cells was determined. Two normal excision repair-proficient human diploid fibroblast strains (WS-1 and KD) and a repair-deficient strain (XP12BE, group A) maintained in a nondividing state were exposed to summer noon-time sunlight for times (5 and 20 min) that induced numbers of dimers equivalent to far UV (254 nm) exposures of 1 and 4 J/m2. Pyrimidine dimers were quantified in extracted DNA using a U V-endonuclease-alkaline sedimentation assay. The excision rates of these dimers were similar to those observed for the excision of UV-induced pyrimidine dimers. No sunlight-induced inhibition or stimulation of DNA repair was observed in either strain at these low exposures.  相似文献   

4.
Abstract— The cytotoxic and mutagenic effects of broad spectrum simulated sunlight, as delivered by a Westinghouse Sun Lamp FS 20 filtered to eliminate wavelengths below 290 nm, were determined in diploid human skin fibroblasts which differ in their ability to repair pyrimidine dimers, and compared with results obtained with UV 254 nm radiation. The cell strains tested included normal fibroblasts; excision repair-deficient xeroderma pigmentosum (XP) cells from patients XP12BE (complementation group A). XP7BE (group D). and XP2BI (group G): and an XP variant patient (XP4BE) whose cells excise pyrimidinc dimers at a normal rate, but exhibit abnormal replication of DNA containing unexcised lesions. Cytotoxicity was assayed from loss of colony-forming ability. The group A cells were most sensitive to the killing effect of the Sun Lamp; the group D and G cells were slightly less sensitive; the XP variant cells showed intermediate sensitivity; and normal cells were most resistant. When the Sun Lamp survival curves for the group A, group D, the XP variant and normal cells were compared with their respective UV 254 nm survival curves, the relationships between the strains were virtually identical (i. e. the curves were related by a constant fluence modification factor). suggesting a common lesion for cell killing. The marker for mutagenesis was resistance to 6-thioguanine. The group A XP cells proved most sensitive to mutations induced by the simulated sunlight: the variant cells were intermediate; and the normal cells were the most resistant. Again, when the curves for mutations induced in these cell strains by simulated sunlight were compared with their respective 254 nm UV mutation curves, these were related by a constant fluence modification factor. suggesting a common lesion for mutagenesis. These results. taken together with published data indicating that at equicytotoxic levels of UV254 nm radiation and the filtered Sun Lamp. the number of pyrimidine dimers in the DNA of XP12BE cells was equal. support the hypothesis that the dimer is the lesion principally involved in both effects. Our data also support the hypothesis that mutations are involved in the sunlight-induced skin cancer of XP patients.  相似文献   

5.
We have determined action spectra for pyrimidine dimer formation and loss of colony-forming ability in Chinese Hamster V-79 cells and have found a very strong correlation between the two. These data are consistent with the notion that damage to DNA is the principle cause of cell death and that the most important type of damage is the pyrimidine dimer. While the shape of the V-79 spectra mimics that of action spectra for bacteria. phage, and purified DNA, V-79 cells are about twice as sensitive to radiation at long wavelengths, relative to the sensitivity at 265 nm. However, if the action spectra are normalized to 297 nm. a wavelength included in the solar spectrum, the two sets of action spectra would coincide at wavelengths relevant to human skin-cancer. Thus an action spectrum based on microorganisms should be adequate for extrapolation to humans in terms of risk due to ozone depleteion.  相似文献   

6.
LEAKAGE OF 86Rb+ AFTER ULTRAVIOLET IRRADIATION OF Escherichia coli K-12   总被引:2,自引:0,他引:2  
Abstract— Stationary phase cultures of a DNA repair proficient Escherichia coli K-12 strain showed a release of intracellular material as assessed by three different methods (260 nm absorption; [methyl-3H]thymidine leakage and 86Rb+ leakage) after broad-band (Black-Light Blue) near-UV radiation but not after far-UV (254 nm) radiation. As a control response for membrane damage to cells, this leakage of intracellular material was also determined by each method after mild-heat (52°C) treatment of E. coli K-12. An action spectrum for the release of 86Rb+ from E. coli K-12 after irradiation with monochromatic wavelengths, from 254 to 405 nm, is also presented. The action spectrum for lethality (F37 values) obtained for this strain, shows that leakage of 86Rb+ occurs at fluences equivalent to or slightly less than fluences causing inactivation at wavelengths above 305 nm. In contrast, at wavelengths below 305 nm, leakage of 86Rb+ from irradiated cells can be induced but only at fluences significantly greater than was required to cause cell inactivation. These results indicate, therefore, that near-UV radiation can induce a damaging effect on the cell's permeability barrier which may be significant in causing the death of the cell, whereas the effect is not significant in causing the death of cells by far-UV radiation where DNA damage is known to be the main cause of lethality.  相似文献   

7.
Abstract— Ultraviolet light causes a type of damage to the DNA of human cells that results in a DNA strand break upon subsequent irradiation with wavelengths around 300 nm. This DNA damage disappears from normal human fibroblasts within 5 h, but not from pyrimidine dimer excision repair deficient xeroderma pigmentosum group A cells or from excision proficient xeroderma pigmentosum variant cells. The apparent lack of repair of the ultraviolet light DNA damage described here may contribute to the cancer prone nature of xeroderma pigmentosum variant individuals. These experiments show that the same amount of damage was produced at 0°C and 37°C indicating a photodynamic effect and not an enzymatic reaction. The disappearance of the photosensitive lesions from the DNA is probably enzymatic since none of the damage was removed at 0°C. Both the formation of the lesion and its photolysis by near ultraviolet light were wavelength dependent. An action spectrum for the formation of photosensitive lesions was similar to that for the formation of pyrimidine dimers and(6–4) photoproducts and included wavelengths found in sunlight. The DNA containing the lesions was sensitive to wavelengths from 304 to 340 nm with a maximum at 313 to 317 nm. This wavelength dependence of photolysis is similar to the absorption and photolysis spectra of the pyrimidine(6–4) photoproducts  相似文献   

8.
Abstract— Excision repair of DNA damage by UV has been assessed in normal human fibroblasts in culture by measuring unscheduled DNA synthesis. Dose response experiments indicated that the same chromophore was involved in UV-induced damage and excision repair at three different wavelengths between 260 and 300 nm. Action spectra for unscheduled DNA synthesis were determined at wavelengths between 260 and 320 nm 30 min after irradiation using 2 doses of UV, 100 J m-2and 10Jm-2. Experiments at the lower dose were carried out because it appeared that repair was saturated with the higher dose at 260 and 280 nm. To explore this part of the spectrum further, experiments were performed with different doses at 260 and 280 nm and unscheduled DNA synthesis assessed 30 min and 24 h after irradiation. At 24 hr after irradiation a significantly greater amount of unscheduled DNA synthesis occurred at 280 nm. It is suggested, therefore, that both DNA and protein are concerned in the absorption of UV which leads to DNA damage and excision repair.  相似文献   

9.
Abstract Using normal human fibroblasts we have determined the ability of far (254 nm), mid (310 nm) or near (365 nm) UV radiation to: (i) induce pyrimidine dimers (detected as UV endonuclease sensitive sites) and DNA single-strand breaks (detected in alkali); (ii) elicit excision repair, monitored as unscheduled DNA synthesis (UDS); and (iii) reduce colony-forming ability. Unscheduled DNA synthesis studies were also performed on dimer excision-defective xeroderma pigmentosum (XP) cells, and the survival studies were extended to include XP and Bloom's syndrome (BS) strains. UV-induced cell killing in normal, BS and XP cells was found to relate to an equivalent dimer load per genome after 254 or 310 nm exposure, whereas at 365 nm the lethal effects of non-dimer damage appeared to predominate. Lethality could not be correlated with DNA strand breakage at any wavelength. The two XP strains examined showed the same relative UDS repair deficiency at the two shorter wavelengths in keeping with a predominant role for pyrimidine dimer repair in the expression of UDS. However, UDS was not detected in 365 nm UV-irradiated normal and XP cells despite dimer induction; this effect was due to the inhibition of DNA repair functions since 365 nm UV-irradiated normal cells showed reduced capacity to perform UDS subsequent to challenge with 254 nm UV radiation.
In short, the near UV component of sunlight apparently induces biologically important non-dimer damage in human cells and inhibits DNA repair processes, two actions which should be considered when assessing the deleterious actions of solar UV.  相似文献   

10.
Five types of Bacillus subtilis spores (UVR, UVS, UVP, RCE, and RCF) differing in repair and/or recombinational capabilities were exposed to monochromatic radiations at 13 wavelengths from 50 to 300 nm in vacuum. An improved biological irradiation system connected to a synchrotron radiation source was used to produce monochromatic UV radiation in this extended wavelength range with sufficient fluence to inactivate bacterial spores. From the survival curves obtained, the action spectra for the inactivation of the spores were depicted. Recombination-deficient RCE (recE) and RCF (recF) spores were more sensitive than the wild-type UVR spores in the entire range of wavelengths. This was considered to mean that DNA was the major target for the inactivation of the spores. Vacuum-UV radiations of 125-175 nm were effective in killing the spores, and distinct peaks of the sensitivity were seen with all types of the spores. Insensitivities at 190 and 100 nm were common to all five types of spores, indicating that these wavelengths were particularly impenetrant and absorbed by the outer layer materials. The vacuum-UV peaks centering at 150 nm were prominent in the spores defective in recombinational repair, while the far-UV peaks at around 235 and 270 nm were prominent in the UVS (uvrA ssp) and UVP (uvrA ssp polA) spores deficient in removal mechanisms of spore photoproducts. Thus, the profiles of the action spectra were explained by three factors; the penetration depth of each radiation in a spore, the efficiency of producing DNA damage that could cause inactivation, and the repair capacity of each type of spore.  相似文献   

11.
Abstract— XP4L0, a xeroderma pigmentosum complementation group A strain, exhibits very limited DNA repair activity. It has extreme sensitivity to UV (254 nm) as determined by colony forming ability. The rate of loss of UV (1 J/m2)-induced pyrimidine dimers from populations of quiescent, nondividing XP4LO cells was determined and found to be slower than that observed for other group A strains (XP25R0, XP12BE, XP8LO). The extreme UV-sensitivity is also exhibited by the nondividing cells in a survival assay that employs nondividing cell populations and does not involve cell reproduction. This result suggests that the extreme sensitivity measured previously by colony-forming ability (a cell-reproduction assay) is due to the excision repair defect alone and not to an additional post-replication repair defect. The very limited excision allows for an accurate definition of target size for inactivation of nondividing cells, about 1 pyrimidine dimer per 105 base pairs, and when compared to results observed for other XP-A strains, provides further evidence that even though excision repair in group A is severely limited, it has biological significance.  相似文献   

12.
Abstract— Action spectra for lethality of both stationary and exponentially growing cells of recombinationless (recA) mutants of Salmonella typhimurium and Escherichia coli were obtained. Maximum sensitivity was observed at 260nm which corresponds to the maximum absorbance of DNA. However, a shoulder occurred in the 280–300 nm range that departed significantly from the absorption spectrum of DNA. At wavelengths longer than 320nm, the shapes of inactivation curves departed significantly from those at wavelengths shorter than 320nm and survival curves at wavelengths longer than 320nm had a large shoulder. A small peak or shoulder occurred in the 330–340nm region of the action spectra. The special sensitivity of recA mutants to broad spectrum near-UV radiation may be due to synergistic effects of different wavelengths. Parallels between the inactivation of recA mutants and the induction of a photoproduct of l -tryptophan toxic for recA mutants (now known to be H2O2) suggest that H2O2 photoproduct from endogenous tryptophan may be involved in the high sensitivity of these strains to broad spectrum near-UV radiation.  相似文献   

13.
We investigated the wavelength dependence of inactivation and membrane damage in yeast cells ( Saccharomyces cerevisiae ) in the range from 170 to 200 nm. Action spectra constructed at wavelengths from 155 to 250 nm using published data were nearly the same for the two types of effects below 200 nm, but differed from the absorption spectrum of DNA, indicating that major lethal damage occurred in the membrane, not in DNA. This conclusion was strongly supported by the finding that far-UV-sensitive cells, which lack excision repair, showed no enhanced sensitivity below 200 nm.  相似文献   

14.
-Ultraviolet-B (UVB,280–320 nm) radiation can promote the induction of skin cancer by two mechanisms: damage of epidermal DNA and suppression of the immune system, allowing the developing tumor to escape immune surveillance. The mixed lymphocyte reaction (MLR) and the mixed epidermal cell lymphocyte reaction (MECLR) are commonly used methods to study the immunosuppressive effects of UVB radiation. To obtain a better understanding of the mechanism by which UVB radiation decreases the alloactivating capacity of in vitro-irradiated cells, action spectra for the MLR and MECLR were determined. Suspensions of peripheral blood mononuclear cells or epidermal cells were irradiated with monochromatic light of 254, 297, 302 or 312 nm and used as stimulator cells in the MLR or MECLR. Using dose-response curves for each wavelength, the action spectra were calculated. Both MLR and MECLR action spectra had a maximum at 254 nm and a relative sensitivity at 312 nm that was a thousand times lower than at 254 nm. Strikingly, the action spectra corresponded very closely to the action spectra that were found by Matsunaga et al. (Photochem. Photobiol. 54,403–410, 1991) for the induction of thymine dimers and (6-4)photoproducts in irradiated calf thymus DNA solutions, strongly suggesting that the UV-induced abrogation of the MLR and MECLR responses is mediated by UV-induced DNA damage. Furthermore, the action spectra for the MLR and MECLR were similar, suggesting that they share a common mechanism for UV-induced suppression.  相似文献   

15.
Sunlight-induced killing of nondividing human cells in culture   总被引:1,自引:0,他引:1  
Nondividing populations of human diploid fibroblasts that are DNA excision repair proficient (WS-1, KD. SSCW) and repair deficient (XP12BE) were exposed to mid-day summer sunlight for a determination of survival based on an ability of cells to remain attached to a culture vessel surface. Whereas mid- and far-UV wavelengths and radiation emitted from a sunlamp cause a gradual degeneraton and detachment of cells in a dose-dependent manner, sunlight does not promote cell killing that is evidenced by these criteria in repair proficient cells. Detachment of repair deficient cells is promoted to a limited extent but only at sunlight exposure times that are low with respect to the amount of DNA damage (pyrimidine dimers) induced. Repair proficient and deficient cells exposed to sunlight for longer times do not detach but are incapable of excuding a viable stain several days after exposure and appear as histologically fixed cells. Pyrimidine dimer levels in these sunlight irradiated cells were great enough to have promoted detachment had these levels been induced by UV (254 nm) alone. Other photodamage induced by these exposures evidently inhibits the dimer-induced cell degeneration that leads to cell detachment. We conclude that pyrimidine dimers are responsible for cell killing at short sunlight exposure times (< 40 min) but that at longer exposures (> 80 min) cells arc killed by a different mechanism that is independent of dimer-caused death.  相似文献   

16.
Bacillus subtilis spores were exposed in vacuo to monochromatic UV radiation from synchrotron radiation in the wavelength range of 150 nm to 250 nm. Survival and frequency of mutation to histidine-independent reversion were analysed for three types of spores differing in DNA-repair capabilities. UVR spores (wild-type DNA repair capability) exhibited nearly equal sensitivity to the lethal effects of far-UV (220 nm and 250 nm) and of vacuum-UV radiation (150 and 165 nm), but showed marked resistance to 190 nm radiation. UVS spores (excision-repair and spore-repair deficient) and UVP spores (a DNA polymerase I-defective derivative of UVS) exhibited similar action spectra; pronounced sensitivity at 250 and 220 nm, insensitivity at 190 nm and a gradual increase of the sensitivity as the wavelength decreased to 165 nm. In all strains, the action spectra for mutation induction paralleled those for the inactivation, indicating that vacuum-UV radiation induced lethal and mutagenic damages in the spore DNA. The insensitivity of the spores to wavelengths around 190 nm may be explicable by assuming that radiation is absorbed by materials surrounding the core in which DNA is situated.  相似文献   

17.
A wild-type Escherichia coli K-12 strain was irradiated using monochromatic radiation in the range 254 to 405 nm. A measure of the cell membrane damage induced at each wavelength was investigated by comparing cell viability after irradiation on nutrient agar and on minimal medium containing either a low or high inorganic salt concentration. An action spectrum for lethality and for cell membrane damage was then determined. From 254 to 310 nm lethality closely corresponded to the absorption spectrum of DNA, and there was no indication of membrane damage. However, above a wavelength of 310 nm, the direct absorption of radiation by DNA could not account for the sensitivity observed. Moreover, at wavelengths longer than 310 nm, cell membrane damage was induced and by an increasing factor up to a peak at 334 nm. At the longer wavelengths of 365 and 405 nm, there was a gradual decrease from the peak of damage to cell membranes induced by 334 nm radiation. These results indicate that cell membrane damage may contribute significantly to near-UV radiation-induced cell lethality in wild-type E. coli K-12.  相似文献   

18.
Abstract —Ultraviolet (UV) action spectra were obtained for lethality and mutagenesis (reversion to tryptophan independence) in Escherichia coli WP2s for wavelengths 254–405 nm with detailed analysis in the UVB region (290–320 nm). Parallel chemical assay yields of pyrimidine dimers in DNA of E. coli RT4 were determined at the same wavelengths. Spectral regions isolated from a Xe arc and resonance lines from a high-pressure Hg-Xe arc lamp were both used for irradiation. In all cases, precise energy distributions throughout the isolated Xe bands regions were defined.
Lethality, mutagenesis, and dimer induction all decreased in efficiency in a similar fashion as the wavelengths of the radiation increased. Between 300 and 320 nm, all characteristics measured showed differences of about two and a half orders of magnitude. Between these wavelengths, the values of the three end points used either coincide with or parallel the absorption spectrum of DNA. The mutagenesis action spectrum coincides closely with the absorption spectrum of DNA. The lethality spectrum is closely parallel to the mutagenicity spectrum; the points, however, consistently occur at about 2 nm longer wavelengths. A calculation derived from the slope of the UVB spectra reveals that a 1-nm shift of the solar UV spectrum to shorter wavelengths would result in a 35% increase in its mutagenic potential. At 325 nm, both biological action spectra show sharp decreases in slope. In addition, above 325 nm the spectra for lethality. mutagenicity, and dimer formation diverge sharply; lethalities at these UVA wavelengths were approximately tenfold greater relative to mutagenicity than at shorter wavelengths. The relative yield of dimer formation by 365 nm radiation is intermediate between the yields for lethality and mutagenesis.  相似文献   

19.
The concentration dependence for the protection of isolated transforming DNA and Escherichia coli by glycerol against 365-nm monochromatic near-ultraviolet light (UV) was measured. Glycerol protection saturates at a concentration of about 0.1 M for DNA and 1.0 M for E. coli. Action spectra for glycerol protection of transforming DNA (tryptophan and histidine markers) are similar to those obtained previously for diazobicyclo[2.2.2.˜octane (DABCO) protection, with protection reaching a maximum near 350-nm UV and decreasing rapidly at wavelengths above and below 350 nm. However, glycerol protects against near-UV about twice as efficiently as DABCO. The action spectrum for protection of E. coli by glycerol against the lethal effects of near-UV was not the same as the spectrum for DNA since glycerol sensitized the cells, but not the DNA, at wavelengths longer than about 380 nm. A possible role of hydroxyl or other radicals was supported by the observation that benzoate also protected DNA against inactivation by 334-nm UV.  相似文献   

20.
The effect of different wavelengths of ultraviolet (UV) radiation on Herpes simplex virus when assayed on mammalian cells (measured by plaque forming ability) was investigated. The wavelength dependence of viral inactivation was obtained for 11 different wavelengths over the region 238–297 nm. The resulting action spectrum does not closely follow the absorption spectrum of either nucleic acid or protein. The most effective wavelengths for viral inactivation are over the region 260–280 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号