首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
崔亮  李洋  侯小东  宫文娟  徐宇虹  曹阿民 《化学学报》2007,65(19):2181-2186
采用液相多肽合成法制备得到窄分子量分布、结构可控的生物相容性聚乙二醇嵌段共聚树枝状聚赖氨酸阳离子功能大分子(PEG-b-Dendritic PLL). 运用1H NMR核磁共振、凝胶电泳以及荧光淬灭滴定手段对所得阳离子两嵌段大分子的化学结构及其与质粒DNA (pDNA)结合作用与复合行为进行了研究. 结果表明聚乙二醇嵌段树枝状聚赖氨酸与pDNA分子可以在缓冲溶液中形成稳定的胶束, pDNA与阳离子树枝赖氨酸嵌段通过静电相互作用形成胶束核, 其水溶性聚乙二醇嵌段形成水溶性胶束壳, 提高了阳离子大分子/pDNA复合胶束的稳定性. 同时发现随着阳离子嵌段树枝状赖氨酸代数的增加, 阳离子两嵌段大分子与pDNA的结合作用增强, 有利于其作为基因转染生物功能载体的应用.  相似文献   

2.
The most important objective of the present study was to explain why cationic lipid (CL)-mediated delivery of plasmid DNA (pDNA) is better than that of linear DNA in gene therapy, a question that, until now, has remained unanswered. Herein for the first time we experimentally show that for different types of CLs, pDNA, in contrast to linear DNA, is compacted with a large amount of its counterions, yielding a lower effective negative charge. This feature has been confirmed through a number of physicochemical and biochemical investigations. This is significant for both in vitro and in vivo transfection studies. For an effective DNA transfection, the lower the amount of the CL, the lower is the cytotoxicity. The study also points out that it is absolutely necessary to consider both effective charge ratios between CL and pDNA and effective pDNA charges, which can be determined from physicochemical experiments.  相似文献   

3.
In this study, we characterized the conventional physicochemical properties of the complexes formed by plasmid DNA (pDNA) and cationic liposomes (CL) composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (50/25/25% molar ratio). We found that these properties are nearly unaffected at the studied ranges when the molar charge ratio (R(±)) between the positive charge from the CL and negative charge from pDNA is not close to the isoneutrality region (R(±) = 1). However, the results from in vitro transfection of HeLa cells showed important differences when R(±) is varied, indicating that the relationships between the physicochemical and biological characteristics were not completely elucidated. To obtain information regarding possible liposome structural modifications, small-angle X-ray scattering (SAXS) experiments were performed as a function of R(±) to obtain correlations between structural, physicochemical, and transfection properties. The SAXS results revealed that pDNA/CL complexes can be described as being composed of single bilayers, double bilayers, and multiple bilayers, depending on the R(±) value. Interestingly, for R(±) = 9, 6, and 3, the system is composed of single and double bilayers, and the fraction of the latter increases with the amount of DNA (or a decreasing R(±)) in the system. This information is used to explain the transfection differences observed at an R(±) = 9 as compared to R(±) = 3 and 6. Close to the isoneutrality region (R(±) = 1.8), there was an excess of pDNA, which induced the formation of a fraction of aggregates with multiple bilayers. These aggregates likely provide additional resistance against the release of pDNA during the transfection phenomenon, reflected as a decrease in the transfection level. The obtained results permitted proper correlation of the physicochemical and structural properties of pDNA/CL complexes with the in vitro transfection of HeLa cells by these complexes, contributing to a better understanding of the gene delivery process.  相似文献   

4.
A block catiomer polyplex, showing a high stability in the extracellular medium and an efficient release of plasmid DNA (pDNA) in the intracellular compartment, was developed by controlling both the cationic charge and disulfide cross-linking densities of the backbone polycations. Poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLL) was thiolated using either of two thiolation reagents, N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) or 2-iminothiolane (Traut's reagent), to investigate the effects of both the charge and disulfide cross-linking densities on the properties of the polyplexes. The introduction of thiol groups by SPDP proceeded through the formation of amide linkages to concomitantly decrease the cationic charge density of PLL segment, whereas Traut's reagent promoted the thiolation with the introduction of cationic imino groups to keep the charge density constant. These thiolated PEG-PLLs were complexed with pDNA to form the disulfide cross-linked block catiomer polyplexes, which had the size of approximately 100 nm. Both thiolation methods were similarly effective in introducing disulfide cross-links to prevent the polyplex from the dissociation through a counter polyanion exchange in the extracellular oxidative condition. On the other hand, the efficient release of pDNA responding to the reductive condition mimicking the intracellular environment was only achieved for the polyplex thiolated with SPDP, a system compensating for the decrease in the charge density with the disulfide cross-linking. This distinctive sensitivity toward oxidative and reductive environments was nicely correlated with the remarkable difference in the transfection efficiency between these two types of thiolated polyplexes (SPDP and Traut's reagent types): the former revealed approximately 50 times higher transfection efficiency toward 293T cells than the latter. Obviously, the balance between the densities of the cationic charge and disulfide cross-linking in the thiolated polyplex played a crucial role in the delivery and controlled release of entrapped pDNA into the microenvironment of intracellular compartment to achieve the high transfection efficiency.  相似文献   

5.
The development of polymers with low toxicity and efficient gene delivery remains a significant barrier of nonviral gene therapy. Modification and tuning of chemical structures of carriers is an attractive strategy for efficient nucleic acid delivery. Here, polyplexes consisting of plasmid DNA (pDNA) and dodecylated or non‐dodecylated polysuccinimide (PSI)‐based polycations are designed, and their transfection ability into HeLa cells is investigated by green fluorescent protein (GFP) expressing cells quantification. All cationic polymers show lower cytotoxicity than those of branched polyethyleneimine (bPEI). PSI and bPEI‐based polyplexes have comparable physicochemical properties such as size and charge. Interestingly, a strong interaction between dodecylated polycations and pDNA caused by the hydrophobic moiety is observed in dodecylated PSI derivatives. Moreover, the decrease of GFP expression is associated with lower dissociation of pDNA from polyplexes according to the heparin displacement assay. Besides, a hydrophobization of PSI cationic derivatives with dodecyl side chains can modulate the integrity of polyplexes by hydrophobic interactions, increasing the binding between the polymer and the DNA. These results provide useful information for designing polyplexes with lower toxicity and greater stability and transfection performance.  相似文献   

6.
A collection of homologous monodisperse facial amphiphiles consisting of an α-, β- or γ-cyclodextrin (α, β or γCD) platform exposing a multivalent display of cationic groups at the primary rim and bearing hexanoyl chains at the secondary hydroxyls have been prepared to assess the influence of the cyclooligosaccharide core size in their ability to complex, compact and protect pDNA and in the efficiency of the resulting nanocondensates (CDplexes) to deliver DNA into cells and promote transfection in the presence of serum. All the polycationic amphiphilic CDs (paCDs) were able to self-assemble in the presence of the plasmid and produce transfectious nanoparticles at nitrogen/phosphorous ratios ≥5. CDplexes obtained from βCD derivatives generally exhibited higher transfection capabilities, which can be ascribed to their ability to form inclusion complexes with cholesterol, thereby enhancing biological membrane permeability. The presence of thiourea moieties as well as increasing the number of primary amino groups then favour cooperative complexation of the polyphosphate chain, enhancing the stability of the complex and improving transfection. In the α and γCD series, however, only the presence of tertiary amino groups in the cationic clusters translates into a significant improvement of the transfection efficiency, probably by activating endosome escape by the proton sponge mechanism. This set of results illustrates the potential of this strategy for the rational design and optimisation of nonviral gene vectors.  相似文献   

7.
Multifunctional gold nanoparticle-peptide complexes for nuclear targeting   总被引:7,自引:0,他引:7  
The ability of peptide-modified gold nanoparticles to target the nucleus of HepG2 cells was explored. Five peptide/nanoparticle complexes were investigated, particles modified with (1) the nuclear localization signal (NLS) from the SV 40 virus; (2) the adenovirus NLS; (3) the adenovirus receptor-mediated endocytosis (RME) peptide; (4) one long peptide containing the adenovirus RME and NLS; and (5) the adenovirus RME and NLS peptides attached to the nanoparticle as separate pieces. Gold nanoparticles were used because they are easy to identify using video-enhanced color differential interference contrast microscopy, and they are excellent scaffolds from which to build multifunctional nuclear targeting vectors. For example, particles modified solely with NLS peptides were not able to target the nucleus of HepG2 cells from outside the plasma membrane, because they either could not enter the cell or were trapped in endosomes. The combination of NLS/RME particles (4) and (5) did reach the nucleus; however, nuclear targeting was more efficient when the two signals were attached to nanoparticles as separate short pieces versus one long peptide. These studies highlight the challenges associated with nuclear targeting and the potential advantages of designing multifunctional nanostructured materials as tools for intracellular diagnostics and therapeutic delivery.  相似文献   

8.
A molecular‐diversity‐oriented approach for the preparation of well‐defined polycationic amphiphilic cyclodextrins (paCDs) as gene‐delivery systems is reported. The synthetic strategy takes advantage of the differential reactivity of primary versus secondary hydroxyl groups on the CD torus to regioselectively decorate each rim with cationic elements and lipophilic tails, respectively. Both the charge density and the hydrophobic–hydrophilic balance can be finely tuned in a highly symmetrical architecture that is reminiscent of both cationic lipids and cationic polymers, the two most prominent types of nonviral gene vectors. The monodisperse nature of paCDs and the modularity of the synthetic scheme are particularly well suited for structure–activity relationship studies. Gel electrophoresis revealed that paCDs self‐assemble in the presence of plasmid DNA (pDNA) to provide homogeneous, stable nanoparticles (CDplexes) of 70–150 nm that fully protect pDNA from the environment. The transfection efficiency of the resulting CDplexes has been investigated in vitro on BNL‐CL2 and COS‐7 cell lines in the absence and presence of serum and found to be intimately dependent on architectural features. Facial amphiphilicity and the presence of a cluster of cationic and hydrogen‐bonding centers for cooperative and reversible complexation of the polyanionic DNA chain is crucial to attain high transgene expression levels with very low toxicity profiles. Further enhancement of gene expression, eventually overcoming that of polyplexes from commercial polyethyleneimine (PEI) polymers (22 kDa), is achieved by building up space‐oriented dendritic polycationic constructs.  相似文献   

9.
Over the past decade, search for novel materials for nucleic acid delivery has prompted a special interest in polymeric nanoparticles (NPs). In this study, the biological applicability of a water‐soluble cationic lipopolymer (WSLP) obtained by the modification of high molecular weight branched poly(ethylenimine) (PEI) with cholesteryl chloroformate is characterized and assessed for better cellular membrane permeability. To test the delivery efficiency of the produced lipopolymer, plasmid DNA (pDNA) encoding the enhanced green fluorescent protein and WSLP are mixed at different charge ratios. WSLP and WSLP/pDNA complexes are characterized by dynamic and static light scattering, particle charge detection, scanning electron microscopy, and transmission electron microscopy. The pDNA loading of WSLP is also verified by agarose gel electrophoresis. Cytotoxicity of PEI, WSLP, and of WSLP/pDNA is evaluated on human A549 and HeLa cells. A remarkable dependence of the toxicity on the dose, cholesterylation, and charge ratio is detected. Transfection is monitored by flow cytometry and by fluorescence microscopy. Importantly, cholesterylation decreases the toxicity of the polymer, while promoting high transfection efficiency in both cell lines. This work indicates a possible optimization mode of the high molecular weight PEI‐based WSLP rendering it a promising candidate for gene delivery.  相似文献   

10.
Gene therapy has attracted much attention in vascular tissue engineering. However, it is still challenging to develop a novel gene carrier with multifunction to overcome the barriers in gene delivery. Herein, the multitargeting gene complexes were developed based on methoxy‐poly(ethylene glycol)‐b‐poly‐(D,L‐lactide‐co‐glycolide) (mPEG‐b‐PLGA), poly(d ,l ‐lactide‐co‐glycolide)‐g‐polyethylenimine‐g‐CAGW (PLGA‐g‐PEI‐g‐CAGW), cell‐penetrating peptide YGRKKRRQRRR (TAT), nuclear localization signals (NLS), and pEGFP‐ZNF580 (pDNA) with the purpose of enhancing the transfection of endothelial cells (ECs). The low cytotoxic multitargeting gene complexes could be easily prepared by adjusting the weight ratio of mPEG‐b‐PLGA and PLGA‐g‐PEI‐g‐CAGW. Meanwhile, CAGW peptide with selectively ECs‐targeting ability and TAT‐NLS peptide sequence with both cell‐penetrating ability and nuclear targeting capacity were simultaneously introduced into gene complexes in order to enable them with the multitargeting function so as to improve their gene delivery capacity. The pDNA loading capacity of these gene complexes was confirmed by agarose gel electrophoresis assay. MTT results demonstrated that the relatively cell viability of the multitargeting gene complexes was higher than those of other groups. These multitargeting gene complexes showed higher internalization and transfection efficiencies than other groups. These results revealed that CAGW and TAT‐NLS peptide sequences benefited for efficient gene delivery. Furthermore, the wound healing assay demonstrated that the multitargeting gene complexes could promote the proliferation and migration of ECs. These results collectively demonstrated that CAGW and TAT‐NLS peptides functionalized gene delivery system could effectively enhance the transfection of ECs, which has great potential in vascular tissue engineering.  相似文献   

11.
Leukemic cells are hard-to-transfect cell lines. Many transfection reagents which can provide high gene transfer efficiency in common adherent cell lines are not effective to transfect established blood cell lines or primary leukemic cells. This study aims to examine a new class of cationic polymer non-viral vector, PEGylated–dextran–spermine (PEG-D-SPM), to determine its ability to transfect the leukemic cells. Here, the optimal conditions of the complex preparation (PEG-D-SPM/plasmid DNA (pDNA)) were examined. Different weight-mixing (w/w) ratios of PEG-D-SPM/pDNA complex were prepared to obtain an ideal mixing ratio to protect encapsulated pDNA from DNase degradation and to determine the optimal transfection efficiency of the complex. Strong complexation between polymer and pDNA in agarose gel electrophoresis and protection of pDNA from DNase were detected at ratios from 25 to 15. Highest gene expression was detected at w/w ratio of 18 in HL60 and K562 cells. However, gene expression from both leukemic cell lines was lower than the control MCF-7 cells. The cytotoxicity of PEG-D-SPM/pDNA complex at the most optimal mixing ratios was tested in HL60 and K562 cells using MTS assay and the results showed that the PEG-D-SPM/pDNA complex had no cytotoxic effect on these cell lines. Spherical shape and nano-nature of PEG-D-SPM/pDNA complex at ratio 18 was observed using transmission electron microscopy. As PEG-D-SPM showed modest transfection efficiency in the leukemic cell lines, we conclude that further work is needed to improve the delivery efficiency of the PEG-D-SPM.  相似文献   

12.
High transfection efficiency and superior cell imaging are required for cationic polymers‐based gene delivery system to afford high therapeutic effect but its high toxicity and unstable cell imaging are easily ignored. In this study, cationic amino poly(glycerol methacrylate) derivative (PGMA‐EDA) is used to incorporate bovine serum albumin (BSA) and aggregation‐induced emission (AIE) molecular (tetraphenylethylene derivatives, TPE) as an efficient carrier for gene transfection and intracellular imaging. The obtained polymer/pDNA‐TPE/BSA (PDTB) quaternary nanoparticles (NPs) not only exhibit efficient gene transfection but also show excellent biocompatibility. After inclusion of TPE/BSA (TB) NPs, BSA promoted dissociation of the complexes upon being protonated and the lipophilic TPE‐reduced endosomal membrane stability, which enhanced endosomal escape of pDNA payload, finally resulting in an excellent gene transfection. On the other hand, less positive surface charge of PDTB NPs than that of the binary PD complexes, as well as the addition of biocompatible BSA, both factors contribute to the improved cell viability. Moreover, the AIE feature of TPE compared to aggregation‐caused quenching character of conventional fluorophores enables the complex with stably tracking the delivery of pDNA into cancer cells. Therefore, the newly developed PDTB complexes may be a promising candidate vector for traceable, safe, and effective gene delivery.  相似文献   

13.
The leading principle of non-viral delivery systems for gene therapy is to mediate high levels of gene expression with low cytotoxicity. Nowadays, biodegradable nanoparticles formulated with poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) were wildly developed. However, the relative lower gene transfection efficiency and higher cytotoxicity still remained critical problems. To address these limitations, PLA-PEG nanoparticles have been composited with other components in their formulation. Here, a novel cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was fabricated onto PLA-PEG nanoparticles as a charge modifier to improve the transfection efficiency and cytotoxicity. The obtained cationic LHLN modified PLA-PEG nanoparticles (LHLN-PLA-PEG NPs) could condense pDNA thoroughly via electrostatic force, leading to the formation of the LHLN-PLA-PEG NPs/pDNA complexes (NPs/DNA complexes). The nanoparticles obtained have been characterized in relation to their physicochemical and biological properties, and the results are extremely promising in terms of low cell toxicity and high transfection efficiency. These results indicated that the novel cationic LHLN modified PLA-PEG nanoparticles could enhance gene transfection in vitro and hold the potential to be a promising non-viral nanodevice.  相似文献   

14.
Low transfection efficiency is always an issue when cationic polymers are used as a nonviral gene vector in the physiological condition, especially in the presence of proteins. A cationic magnetic nanoparticle (MNP) may be an alternative to solve this problem because a magnetic field can help to attract the MNP and internalize it into cells. The aim of this study was to determine the potency of polyethylenimine (PEI)-decorated MNPs for efficiently complexing and delivering plasmid DNA in vitro with the help of a magnetic field. PEI is associated with poly(acrylic acid)-bound superparamagnetic iron oxide (PAAIO) through electrostatic interactions (PEI-PAAIO). PEI-PAAIO formed stable polyplexes with pDNA in the presence and absence of 10% fetal bovine serum (FBS) and could be used for magnetofection. The effect of a static magnetic field on the cytotoxicity, cellular uptake, and transfection efficiency of PEI-PAAIO/pDNA was evaluated with and without 10% FBS. Magnetofection efficacy in HEK 293T cells and U87 cells containing 10% FBS was significantly improved in the presence of an external magnetic field. The amount of internalized iron was quantitatively measured using an inductively coupled plasma-optical emission spectrometer and directly visualized using Prussian blue staining. The internalized pDNA was visualized using a confocal laser scanning microscope.  相似文献   

15.
Positively-charged gene delivery agents, such as cationic liposomes, typically prepared by mixing a cationic lipid and a neutral lipid in a 1 : 1 molar ratio, exhibit a fundamental flaw: on the one hand, the charge encourages cell uptake; on the other hand, the charge leads to aggregation in vivo with anionic serum components. We herein report a more phase-stable analogue of the zwitterionic and fusogenic lipid DOPE that allows for the reduction of the cationic lipid component of the liposome from 50 to 9 mol% with almost no apparent loss in transfection activity. This reduction in charge may induce important in vivo stability whilst still imparting high cell uptake and transgene expression.  相似文献   

16.
Instilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo. Outstanding organ selectivities can then be programmed with no need of incorporating a biorecognizable motif in the formulation. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes by making cyclooligosaccharide patchiness the focus.  相似文献   

17.
TAT peptide was attached to the surface of plain and PEGylated liposomes. These TAT peptide-modified liposomes have been shown to translocate into a variety of normal and cancer cells if a non-hindered interaction between the cell surface and liposome-attached TAT peptide was made possible. TAT peptide-liposomes translocated into cells remain intact within first few hours as proved by a co-localization of fluorescent markers entrapped inside liposomes and incorporated into the liposomal membrane. After 2 hours liposomes had slowly migrating towards cell nuclei. Liposomes had completely disintegrated with their inner marker released by approximately 9 hours. TAT peptide-liposomes were made slightly cationic by adding up to 10 mol %. of a cationic lipid (DOTAP). These slightly cationic liposomes were non-toxic towards cells, formed firm complexes with DNA (plasmid encoding for the formation of the Green Fluorescent Protein), and efficiently transfected a variety of cells. TAT peptide-liposomes can be considered as promising carriers for the non-endocytotic intracellular delivery of drugs and DNA.  相似文献   

18.
We have engineered a novel, non-viral, multifunctional gene vector (STR-CH(2)R(4)H(2)C) that contained stearoyl (STR) and a block peptide consisting of Cys (C), His (H), and Arg (R). STR-CH(2)R(4)H(2)C can form a stable nano-complex with plasmid DNA (pDNA) based on electronic interactions and disulfide cross linkages. In this study, we evaluated the efficacy of STR-CH(2)R(4)H(2)C as a gene vector. We first determined the optimal weight ratio for STR-CH(2)R(4)H(2)C/pDNA complexes. The complexes with a weight ratio of 50 showed the highest transfection efficacy. We also examined the transfection efficacy of STR-CH(2)R(4)H(2)C/pDNA complexes with or without serum and compared STR-CH(2)R(4)H(2)C/pDNA transfection efficacy with that of Lipofectamine. Even in the presence of serum, STR-CH(2)R(4)H(2)C showed higher transfection efficacy than did Lipofectamine. In addition, we determined the mechanism of transfection of the STR-CH(2)R(4)H(2)C/pDNA complexes using various cellular uptake inhibitors and evaluated its endosomal escape ability using chloroquine. Macropinocytosis was main cellular uptake pathway of STR-CH(2)R(4)H(2)C/pDNA complexes. Our results suggested that STR-CH(2)R(4)H(2)C is a promising gene delivery system.  相似文献   

19.
This study sought to evaluate the in vitro transfection efficiency of plasmid DNA (pDNA)-loaded chitosan-modified poly(DL-lactide-co-glycolide) nanospheres (CS-PLGA NS) in a gene-delivery system. Using the emulsion solvent diffusion (ESD) method, pDNA-loaded PLGA NS was prepared and the surface of the PLGA NS was modified by binding to CS. Gene transfection ability of CS-PLGA NS was examined in A549 cells. The luciferase gene was used as a reporter gene. The pattern of luciferase activity by pDNA-loaded CS-PLGA NS was initially weak, but gradually grew stronger before decreasing activity. These phenomena should be in accordance with the sustained-release profile of pDNA from PLGA NS in the cytosol and the pDNA protection against DNase. Positively charged CS-PLGA NS was found, by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, not to exhibit cytotoxicity on A549 cells. These results suggest that CS-PLGA NS are potential contributors to efficient pDNA delivery due to their increased interactions with cells and lack of cytotoxic effects.  相似文献   

20.
The in vitro transfection activity of a novel series of N,N'-diacyl-1,2-diaminopropyl-3-carbamoyl-(aminoethane) derivatives was evaluated against a mouse melanoma cell line at different +/- charge ratios, in the presence and absence of helper lipids. Only the unsaturated derivative N,N'-dioleoyl-1,2-diaminopropyl-3-carbamoyl-(aminoethane), (1,2lmp[5]) mediated significant increase in the reporter gene level which was significantly boosted in the presence of DOPE peaking at +/- charge ratio of 2. The electrostatic interactions between the cationic liposomes and plasmid DNA were investigated by gel electrophoresis, fluorescence spectroscopy, dynamic light scattering and electrophoretic mobility techniques. In agreement with the transfection results, 1,2lmp[5]/DOPE formulation was most efficient in associating with and retarding DNA migration. The improved association between the dioleoyl derivative and DNA was further confirmed by ethidium bromide displacement assay and particle size distribution analysis of the lipoplexes. Differential scanning calorimetry studies showed that 1,2lmp[5] was the only lipid that exhibited a main phase transition below 37 degrees C. Likewise, 1,2lmp[5] was the only lipid found to form all liquid expanded monolayers at 23 degrees C. In conclusion, the current findings suggest that high in vitro transfection activity is mediated by cationic lipids characterized by increased acyl chain fluidity and high interfacial elasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号