首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 115 毫秒
1.
在汽车尾气催化净化、催化燃烧等高温严酷环境中,催化剂载体由于烧结等原因,其比表面剧烈减少,引起活性组分聚集,从而使催化剂活性明显下降^[1,2]。氧化铝是一种常用载体,但经高温煅烧后容易烧结并向α相转变,导致比表面减少。目前许多文献报道了稀土元素、碱土金属以及硅元素对氧化铝的改性作用^[3-5],这些元素的添加可在一定程度上提高氧化铝的热稳定性,但表面活性剂在这一方面的应用未见报道。本文采用溶胶-凝胶法制备了镧改性的氧化铝,通过添加不同比例表面活性剂[聚乙烯醇(PVA)]研究了镧和聚乙烯醇对氧化铝孔性质及热稳定性的影响。  相似文献   

2.
本文用镧、钡共同添加并使用溶胶-凝胶法制得改性氧化铝。详细研究了在保持 La含量为 5.2wt%时, Ba添加量的改变对氧化铝热稳定性的影响。实验结果表明镧、钡元素的共添加能大大增加氧化铝的热稳定性,从而使氧化铝在高温下保持高比表面积。体相中同时添加 5.2wt% La和 2wt% Ba以及 5.2wt% La和 7wt% Ba能使氧化铝保持较好的热稳定性,样品经 1100℃煅烧 20h后,比表面分别达 100.8m2· g-1和 92.3m2· g-1。通过对添加物与氧化铝保持高温高表面能力的内在联系的探讨,得出 Ba、 La元素的添加提高氧化铝热稳定性的原因主要表现在两方面:一是抑制氧化铝的微孔烧结速度;二是阻止了氧化铝向α相的转变。  相似文献   

3.
4.
随着催化工业的发展,迫切需要在高温下既能保持较大比表面积,又具有良好的热稳定性的新型活性氧化铝。这种氧化铝作为一种载体,可直接应用于催化燃烧和汽车尾气净化等领域。目前,工业生产用的氧化铝经高温煅烧后,微孔易烧结并向稳定相态α相转变,造成其比表面积迅速下降。为了解决这一问题,近年来国外已进行了许多这方面的研究[1-5],它们绝大多数采用以镧浸渍对氧化铝表面进行改性的表面保护方法,但我国在这方面却发展缓慢。我们曾报导过硅的添加对氧化铝表面性质的影响,本文以未加镧的氧化铝为空白实验,采用溶胶─凝胶法(体相与表面同时保护法)来制备样品,系统研究了不同含量镧的添加对氧化铝热稳定性的影响。  相似文献   

5.
6.
7.
氧化铝是高温催化反应中常用的载体材料. 高于1 000 ℃时, Al2O3通过表面活性原子的迁移和表面羟基脱水发生烧结, 并向α相转变[1,2], 同时随着比表面积剧烈下降, 导致催化剂活性组分聚集, 催化剂活性下降等. 大量研究表明, 稀土元素, 硅及碱土元素可明显改善氧化铝的热稳定性[3~8]. 本文以溶胶-凝胶法单独引入Ba元素, 考察了Ba添加量对Al2O3热稳定性的影响. 还采用溶胶-凝胶与表面浸渍相结合的方式共同引入La和Ba, 考察了两元素协同作用对Al2O3热稳定性的影响.  相似文献   

8.
采用硫酸铝铵分解法制得γ-Al2O3超细粉末,系统研究了以「La(EDTA)」^-为浸渍液时,La组分的添加对所得的Al2O3热稳定性的影响,结果表明,La组分的适量添加可抑制高温下Al2O3微孔的烧结和向α相的转变,从而提高氧化铝的热稳定性,使氧化铝在高温下保持较大的比表面积,添加x(La)=1%的样品在1100℃焙烧32h后其比表面积达98.0m^2/g,还比较了以La(NO3)3为侵渍液对硫  相似文献   

9.
水热改性对氧化铝载体织构和表面性质的影响   总被引:2,自引:0,他引:2  
The alumina support was treated in the moderate aqueous hydrothermal condition to avoid from the excess growth of boehmite (AlOOH) crystals which usually results in the obvious decrease of the specific surface area (BET). The experimental results indicated that the hydrothermal treatment of the alumina support at 140 ℃ for 2 hours promoted the formation of the plate-like AlOOH crystallites on the surface of the support via dissolution-precipitation route. The occurrence of the nano plate-like structure led to the improvement in the structural and surface properties, such as the increase of the specific surface area, the surface hydroxyl concentration and the surface acidity.  相似文献   

10.
γ—氧化铝膜的表面酸碱性   总被引:6,自引:0,他引:6  
研究了氧化铝膜的表面酸碱性,发现采用溶胶-凝胶法制备的氧化铝膜的表面酸碱性受膜的择优取向性的影响;焙烧温度越高,形成的氧化铝膜的(110)面择优取向性越强,氧化铝膜表面呈碱性OH基团密度越大,碱量越大;而γ-氧化铝膜表面酸性OH基团密度越小,酸量越少。经700℃焙烧形成的氧化铝膜表面,双碱性OH基团为主,对酸性气体有良好的选择吸附性。含25%(体积分数)CO2/N2混合气体经700℃焙烧一 γ-氧化铝膜分离后,混合气中的CO2浓度降为0.7%。  相似文献   

11.
介孔氧化铝的制备及应用   总被引:2,自引:0,他引:2  
杨泠  冯炫  刘应亮 《化学进展》2010,22(1):32-43
本文介绍了介孔氧化铝(MA)的各种制备方法,概括了MA制备的分析表征方法,如TEM、SAED、XRD、LAXRD、气体吸附-脱附、DT-TGA等。通过平均孔径、比表面积、MA形貌等因素,讨论和总结了制备方法、铝源、模板剂、反应物配比、pH值和后处理方法等对MA制备和热稳定性的影响,综述了近年来MA的研究和应用进展,并对今后的研究方向进行了展望。  相似文献   

12.
 采用pH摆动法,以硫酸铝为铝源,以氢氧化钠为碱沉淀剂,考察了添加SiO2对沉淀氧化铝物性的影响.通过孔结构分析、粒度测定和电镜观察等证实,加入少量SiO2可使沉淀粒子分散、变小,颗粒相对均匀,从而提高了氧化铝的比表面积和孔集中的程度.当加入2.5%的SiO时,pH仅摆动2次,即可使氧化铝粉体的孔体积高达1.2ml/g,比表面积达380m2/g.这类氧化铝的孔结构适宜,粒子小,易直接成型为孔径集中和耐压强度好的载体,故用于重油高压加氢脱氮反应具有较好的性能.沉淀时酸侧pH值降低,尽管沉淀氧化铝的孔径向较小的方面集中,但此时沉淀粒子呈紧密堆积,颗粒变大,比表面积下降,氧化铝沉淀粒子的结构发生改变.不同结构的氧化铝表现出不同的催化活性.  相似文献   

13.
 以硫酸铝液为原料,以氨水、氢氧化钠和铝酸钠为碱沉淀剂,采用pH摆动法制备了高比表面积、大孔径、窄孔分布、大孔体积氧化铝,考察了沉淀剂、沉淀温度及沉淀时酸侧pH值对氧化铝物性的影响,并对pH摆动法与等pH沉淀法的结果进行了比较.结果表明,通过改变制备参数可以获得高比表面积、大孔体积的氧化铝,当沉淀温度为70℃,pH摆动3或4次时,氧化铝的孔体积可高达1.0ml/g,比表面积仍大于300m2/g.用pH摆动法制得的样品比用等pH沉淀法制得的样品容易酸溶,对挤压成型有利.不同样品在酸溶液中的分散性表明,用氨水沉淀剂可获得相对较小的沉淀粒子.改变沉淀时酸侧的pH值,可导致沉淀粒子的结构发生变化.  相似文献   

14.
成胶条件对耐高温高表面积氧化铝热稳定性的影响   总被引:2,自引:0,他引:2  
 研究了氧化铝制备过程中的各种成胶条件(氨水滴加速度,pH值,温度和硝酸铝溶液的初始浓度等)对氧化铝热稳定性的影响,初步探讨了氧化铝的烧结机理.结果表明,各种成胶条件均可在一定程度上影响氧化铝的比表面积、孔容和平均孔径.选择适宜的制备条件能够阻止氧化铝在高温下烧结,改善氧化铝的孔结构,提高其热稳定性,从而制备出耐高温高比表面积的氧化铝.  相似文献   

15.
高比表面积有序介孔氧化铝的制备与表征   总被引:5,自引:1,他引:5  
采用溶胶-凝胶法以非离子表面活性剂PEO-PPO-PEO三嵌段共聚物F127为模板剂, 以异丙醇铝为铝源, 以异丙醇为溶剂, 成功地制备出比表面积为485 m2/g、孔径分布窄(2~20 nm)、孔容在1.2 cm3/g以上和孔道呈蠕虫状且具有一定有序性的介孔氧化铝. 采用BET, TEM, XRD和TG多种测试技术对产物性能进行了表征. 探讨了水铝比、醇水混合溶液的滴加速度、反应时间、水浴温度、陈化温度及陈化时间等条件对合成的有序介孔氧化铝结构的影响.  相似文献   

16.
林建新  郑勇  郑瑛  魏可镁 《无机化学学报》2006,22(10):1778-1782
采用溶胶凝胶法,以蔗糖和正硅酸乙酯(TEOS)为原料,草酸为TEOS水解的催化剂,制备均相碳化硅前驱体,在氩气氛和高温条件下(1 350~1 600 ℃)将碳化硅先驱体进行碳热还原,制备出高比表面积的SiC。考察了水/TEOS物质的量的比、碳/硅物质的量的比及镍盐等因素对碳化硅比表面积的影响。结果表明,当nwater/nTEOS=7.5,nC/nSi=4时,适宜的镍催化剂(nNi/nTEOS=0.005),凝胶形成的时间最短,镍盐的加入可使碳热还原温度降低200 ℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号