首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new chelating matrix has been prepared by immobilising sulfanilamide (SA) on silica gel (SG) surface modified with 3-chloropropyltrimethoxysilane as a sorbent for the solid-phase extraction (SPE) Cu(II), Zn(II) and Ni(II). The determination of metal ions in aqueous solutions was carried out by inductively coupled plasma optical emission spectrometry (ICP-OES). Experimental conditions for effective sorption of trace levels of Cu(II), Zn(II) and Ni(II) were optimised with respect to different experimental parameters using the batch and column procedures. The presence of common coexisting ions does not affect the sorption capacities. The maximum sorption capacity of the sorbent at optimum conditions was found to be 34.91, 19.07 and 23.62 mg g?1 for Cu(II), Zn(II) and Ni(II), respectively. The detection limit of the method defined by IUPAC was found to be 1.60, 0.50 and 0.61 µg L?1 for Cu(II), Zn(II) and Ni(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 4.0% (n = 8). The method was applied to the recovery of Cu(II), Zn(II) and Ni(II) from the certified reference material (GBW 08301, river sediment) and to the simultaneous determination of these cations in different water samples with satisfactory results.  相似文献   

2.
A simple and reliable solid-phase extraction (SPE) method has been developed to synthesise two new sorbents: 6-propyl-2-thiouracil and 5,6-diamino-2-thiouracil physically loaded onto alumina surface, phases I and II, respectively. The synthesis of these new phases has been confirmed by IR-spectroscopy. The surface concentrations of the organic moieties were determined to be 0.182 and 0.562 mmol g?1 for phases I and II, respectively. The evaluation of the selectivity and metal uptake properties incorporated in these two alumina phases were also studied and discussed for 10 different metal ions: Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pb(II) and Ag(I) under different controlling factors. The data obtained clearly indicated that the new SP-extractors have the highest affinity for retention of Hg(II) ions. Selective separation of Hg(II) from Ag(I) as one of the most interfering ion, in addition to the other eight coexisting metal ions under investigation, was achieved successfully using the new sorbents at pH = 9.0 under static conditions. Therefore, Hg(II) exhibits major retention percentage (100.0%) using phase I or II. However, Ag(I) exhibits minor retention percentage equal to 1.33% using phase I and 0.67% using phase II. On the other hand, the retention percentage of the other eight metal ions ranged (0.0–3.08%) using phase I and (0.0–1.54%) using phase II at the same pH. The new phases were applied for separation and determination of trace amounts of Hg(II) and Ag(I) spiked natural water samples using cold vapour atomic absorption spectroscopy and atomic absorption spectroscopy with no matrix interference. The high recovery values of Hg(II) and Ag(I) obtained using phases I and II were ranged 98.9 ± 0.1–99.2 ± 0.05% along with a good precision (RSD% 0.01–0.502%, N = 3) demonstrate the accuracy and validity of the new sorbents for separation and determination of Hg(II) and Ag(I).  相似文献   

3.
The silica gel with 1-(2-thiasolylazo)-2-naphthol adsorbed was obtained. The adsorption of Cu(II) and Zn(II) from an aqueous solution onto loaded silica gel was studied. The capabilities of 1-(2-thiasolylazo)-2-naphthol immobilized for Cu(II) and Zn(II) preconcentration, visual and diffusion reflectance spectroscopic detection was evaluated. The detection limits were 10 and 15 microg.l(-1), respectively. Visual test scales for metal ions determination in the range 0.65-13 microg per sample were worked out. The developed methods were applied to Cu(II) and Zn(II) determination in natural and tap water. The obtained results agreed well with the reported value.  相似文献   

4.
Silica gel was firstly functionalized with aminopropyltrimethoxysilane obtaining the aminopropylsilica gel (APSG). The APSG was reacted subsequently with curcumin yielding curcumin-bonded silica gel (curcumin-APSG). This new bonded silica gel was used for separation, pre-concentration and determination of Cu(II), Fe(III), Zn(II) in biological and natural water samples by inductively coupled plasma optical emission spectrometry (ICP-OES). Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the newly sorbent was 4.0. Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 2.0 mL of 0.1 mol L− 1 of HCl. Common coexisting ions did not interfere with the separation and determination at pH 4.0. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 0.63, 0.46 and 0.37 mmol g− 1 for Cu(II), Fe(III) and Zn(II) respectively. The time for 95% sorption for Cu(II) Fe(III) and Zn(II) was less than 2 min. The detection limits of the method defined by IUPAC was found to be 0.12, 0.15 and 0.40 ng mL− 1 for Cu(II), Fe(III) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was lower 3.0% (n = 5). The procedure was validated by analyzing the certified reference river sediment material (GBW 08301, China), the results obtained were in good agreement with standard values. This sorbent was successfully employed in the separation and pre-concentration of trace Cu(II), Fe(III) and Zn(II) from the biological and natural water samples yielding 75-fold concentration factor.  相似文献   

5.
Three novel solid phase extraction agents were developed by functionalising sub-micron sized silica gel with organic functional moieties possessing {SN}-ligating atoms. The extractors were characterised by FTIR and TGA. Their capability of adsorbing the ions Fe(III), Cu(II), Zn(II), Cd(II), Cr(VI), Hg(II), Pb(II), Co(II), Ni(II), and Ag(I) is described. The extractors show pH-tunable selectivity for Ag(I) and/or Pb(II). By adjusting the pH to 5 or 6, high affinity is found for both Ag(I) and Pb(II), with little or no interference by the other metal ions. At pH values of <2, the extractors become highly selective for Ag(I), with an adsorption capacity of 35 mg g?1. Little mechanical stirring is required due to the size of the particles. The recovery rates for both Ag(I) and Pb(II) were better 90% even after five repetitive adsorption-desorption cycles.  相似文献   

6.
Hasani M  Yaghoubi L  Abdollahi H 《Talanta》2006,68(5):1528-1535
H-point standard addition method, HPSAM, with simultaneous addition of three analytes is proposed for the resolution of ternary mixtures. It is a modification of the previously described H-point standard addition method that permits the resolution of three species from a unique calibration set by making the simultaneous addition of the three analytes. The method calculates the analyte concentration from spectral data at two wavelengths where the two species selected as interferents present the same absorbance relationship. These wavelength pairs are easily found, and can be selected to give the most precise results. Diethyldithiocarbomate (DDC) in a cationic micellar solution of cetyltrimethylammonium bromide (CTAB) was used for determination of Fe(II), Co(II) and Cu(II) at pH 5.50. The results showed that simultaneous determination of Fe(II), Co(II) and Cu(II) could be preformed in the range of 0.0–6.0, 0.0–8.0 and 0.0–12.0 μg ml−1, respectively. The proposed method was successfully applied to the simultaneous determination of Fe(II), Co(II) and Cu(II) in several synthetic mixtures containing different concentration of Fe(II), Co(II) and Cu(II).  相似文献   

7.
A partial least squares (PLS-1) calibration model based on kinetic—spectrophotometric measurement, for the simultaneous determination of Cu(II), Ni(II) and Co(II) ions is described. The method was based on the difference in the rate of the reaction between Co(II), Ni(II) and Cu(II) ions with 1-(2-pyridylazo)2-naphthol in a pH 5.8 buffer solution and in micellar media at 25°C. The absorption kinetic profiles of the solutions were monitored by measuring the absorbance at 570 nm at 2 s intervals during the time range of 0–10 min after initiation of the reaction. The experimental calibration matrix for the partial least squares (PLS-1) model was designed with 30 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 0.1-2 μg mL−1 for each cation. The proposed method was successfully applied to the simultaneous determination of Cu(II), Ni(II) and Co(II) ions in water and in synthetic alloy samples.   相似文献   

8.
A device has been developed for the measurement of copper(II) ions (Cu2+) in aqueous medium. The device reported here is an electrochemical transistor which consists of two platinum electrodes separated by 100 μm spacing and bridged with an anodically grown film of polycarbazole. Polycarbazole film (undoped form) is observed to be highly selective for the Cu(II) ions. In a completed device, the conductivity of the polycarbazole film changes on addition of Cu(II) ions. The change in conductivity is attributed to the conformational changes in the polymer phase on occupation of the Cu(II) ions, without affecting electron/proton transfer. The device turns on by adding 2.5 × 10−6 M Cu(II) ions and reaches a saturation region beyond 10−4 M Cu(II) ion concentrations. In the above concentration range, the device response [I D vs. log Cu(II) ion concentration] is linear. The selectivity of the device for other metal ions such as Cu(I), Ni(II), Co(II), Fe(II), Fe(III), Zn(II) and Pb(II) is also studied. Received: 6 April 1999 / Accepted: 20 August 1999  相似文献   

9.
The modified sorbents with dithizone and zinc dithizonate adsorbed on the silica surface were obtained. The adsorption of heavy metal ions from aqueous solutions onto loaded silicas was studied. Color scales for Ag(I), Hg(II) and Pb(II) visual test detection were worked out. The modified silica gels were established to be applicable to semi-quantitative determination of these metal ions in buttermilk, natural, mineral and waste water.  相似文献   

10.
A chemically modified electrode was constructed for rapid, simple, accurate, selective and highly sensitive simultaneous determination of Cu(II) and Cd(II) using square wave anodic stripping voltammetry. The electrode was prepared by incorporation of SiO2 nanoparticles, coated with a newly synthesized Schiff base, in carbon paste electrode. The limit of detection was found to be 0.28 ng mL?1 and 0.54 ng mL?1 for Cu(II) and Cd(II), respectively. The proposed chemically modified electrode was used for the determination of copper and cadmium in several foodstuffs and water samples.  相似文献   

11.
Jiang N  Chang X  Zheng H  He Q  Hu Z 《Analytica chimica acta》2006,577(2):225-231
A new Ni(II)-imprinted amino-functionalized silica gel sorbent with excellent selectivity for nickel(II) was prepared by an easy one-step reaction by combining a surface imprinting technique for selective solid-phase extraction (SPE) of trace Ni(II) in water samples prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Compared with non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had higher selectivity and adsorption capacity for Ni(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Ni(II) was 12.61 and 4.25 mg g−1, respectively. The relatively selective factor (αr) values of Ni(II)/Cu(II), Ni(II)/Co(II), Ni(II)/Zn(II) and Ni(II)/Pd(II) were 45.99, 32.83, 43.79 and 28.36, which were greater than 1. The distribution ratio (D) values of Ni(II)-imprinted polymers for Ni(II) were greatly larger than that for Cu(II), Co(II), Zn(II) and Pd(II). The detection limit (3σ) was 0.16 ng mL−1. The relative standard deviation of the method was 1.48% for eight replicate determinations. The method was validated by analyzing two certified reference materials (GBW 08618 and GBW 08402), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace nickel in plants and water samples with satisfactory results.  相似文献   

12.
An imidazolate-bridged copper(II)-zinc(II) complex (Cu(II)-diethylenetriamino-μ-imidazolato-Zn(II)-tris(2-aminoethyl)amine perchlorate (denoted as “Cu,Zn complex”) and a simple copper(II) complex (Cu(II)-tris(2-aminoethyl) amine chloride (“Cu-tren”) were prepared and immobilised on silica gel (by hydrogen or covalent bonds) and montmorillonite (by ion exchange). The immobilised substances were characterised by FT-IR spectroscopy and their thermal characteristics were also studied. The obtained materials were tested in two probe reactions: catalytic oxidation of 3,5-di-tert-butyl catechol (DTBC) (catecholase activity) and the decomposition of hydrogen peroxide (catalase activity). It was found that the catecholase activity of the Cu,Zn complex increased considerably upon immobilization on silica gel via hydrogen bonds and intercalation by ion exchange among the layers of montmorillonite. The imidazolate-bridged copper(II)-zinc(II) complex and its immobilised versions were inactive in hydrogen peroxide decomposition. The Cu(II)-tris(2-aminoethyl)amine chloride complex displayed good catalase activity; however, immobilisation could not improve it.  相似文献   

13.
De Robertis A  Bellomo A  De Marco D 《Talanta》1976,23(10):732-734
A study is reported of the formation of Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Ag(I) and Cd(II) hexacyanocobaltates. The results show that the precipitates form by reaction of the metal ions with KCo(CN)(6)(2-) ion-pairs in 1:1 ratio, followed by solid phase transformations.  相似文献   

14.
MOGHIMI  Ali 《中国化学》2007,25(10):1536-1541
Silica gel-loaded (E)-N-(1-thien-2'-ylethylidene)-1,2-phenylenediamine (TEPDA) phase was synthesized based on physical adsorption approaches. The stability of a chemically modified TEPDA especially in concentrated hydrochloric acid that was then used as a recycling and preconcentration reagent allowed the further uses of silica gel-loaded immobilized TEPDA phase. The application of this silica gel-loaded phase to sorption of a series of metal ions was performed by using different controlling factors such as the pH of the metal ion solution and the equilibration shaking time by the static technique. This difference was interpreted on the basis of selectivity incorporated in these sulfur containing silica gel-loaded TEPDA phases. Hg(Ⅱ) was found to exhibit the highest affinity towards extraction by these silica gel-loaded TEPDA phases. The pronounced selectivity was also confirmed by the determined distribution coefficients (Kd) of all the metal ions, showing the highest value reported for mercury(Ⅱ) extraction by the silica gel immobilized TEPDA phase. The potential applications of the silica gel immobilized TEPDA phase to selective extraction of mercury(Ⅱ) from aqueous solution were successfully accomplished and preconcentration of low concentration of Hg(Ⅱ) (30 pg·mL^-1) from natural tap water with a preconcentration factor of 200 for Hg(Ⅱ) off-line analysis was conducted by cold vapor atomic absorption analysis.  相似文献   

15.
A novel chelating resin (poly-Cd(II)-DAAB-VP) was prepared by metal ion imprinted polymer (MIIP) technique. The resin was obtained by one pot reaction of Cd(II)-diazoaminobenzene-vinylpyridine with cross-linker ethyleneglycoldimethacrylate (EGDMA). Comparing with non-imprinted resin, the poly-Cd(II)-DAAB-VP has higher adsorption capacity and selectivity for Cd(II). The distribution ratio (D) values for the Cd(II)-imprinted resin show increase for Cd(II) with respect to both D values of Zn(II), Cu(II), Hg(II) and non-imprinted resin. The relatively selective factor (αr) values of Cd(II)/Cu(II), Cd(II)/Zn(II) and Cd(II)/Hg(II), are 51.2, 45.6, and 85.4, which are greater than 1. poly-Cd(II)-DAAB-VP can be used at least 20 times without considerable loss of adsorption capacity. Based on poly-Cd(II)-DAAB-VP packed columns, a highly selective solid-phase extraction (SPE) and preconcentration method for Cd(II) from aqueous solution was developed. The MIIP-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.093 to 30 μg l−1. The detection limit and quantification limit were 0.093 and 0.21 μg l−1 (3σ) for flame atomic absorption spectrometry (FAAS). The relative standard deviation of the eleven replicate determinations was 3.7% for the determination of 10 μg of Cd(II) in 100 ml water sample. Determination of Cd(II) in certified river sediment sample (GBW 08301) demonstrated that the interfering matrix had been almost removed during preconcentration. The column was good enough for Cd(II) determination in matrixes containing components with similar chemical property such as Cu(II), Zn(II) and Hg(II).  相似文献   

16.
A new stable chelating resin was synthesized by incorporating the bis(2-benzimidazolyl methyl)amine into Merrifield polymer through CN covalent bond and characterized by elemental analysis, IR and thermal study. The sorption capacity of the newly formed resin for Ag(I), Cu(II), Fe(III), Hg(II) and Pb(II) as a function of pH have been studied. The resin exhibits no affinity for alkali or alkaline earth metals. In column operation it has been observed that Ag(I) in trace quantities can be separated from different complex matrices and Hg(II) can be removed from the river water spiked with Hg(II) at usual pH of natural waters.  相似文献   

17.
Parkash R  Bansal R  Rehani SK  Dixit S 《Talanta》1998,46(6):1573-1576
A simple, rapid, sensitive and selective method for the microgram detection and spectrophotometric determination of EDTA in water, human urine and detergents, based on its reaction with Co(II) and phosphomolybdic acid at pH 0.5–2.0 is reported. Absorbance is measured against Co(II)–phosphomolybdic acid reference solution at 750 nm. The effect of time, temperature, pH and Co(II) or phosphomolybdic acid concentration is studied, and optimum operating conditions are established. Beer's law is applicable in the concentration range 0.3–1.9 μg ml−1 of 10−5M EDTA. Its detection limit is 0.14 μg in the solution phase and 0.03 μg in the resin phase. The relative standard deviation is ±0.13 μg. Ag(I), Zn(II), Cu(II), Ni(II), Pb(II), Cd(II), Ca(II), Mg(II), Fe(III), Cr(III), U(VI), chloride, nitrite, phosphate, oxalate, borate and amino acids do not interfere.  相似文献   

18.
2,4,6-Tri(2′-pyridyl)-s-triazine (TPTZ) complexes with iron(II) and ruthenium(III) were prepared. Their sorption and desorption features on silica gel have been investigated. Both complexes were strongly adsorbed. This has been utilized for separating and preconcentrating iron(II) and ruthenium(III) using TPTZ-impregnated silica gel. The chromatographic behavior of TPTZ on silica gel column was examined and found to be effective modifier for silica gel surface. The sorption capacity of silica gel for those metal-triazine complexes has been determined under static conditions and was found to be 5.28 × 10–3 mM (Fe(TPTZ)22+) and 2.9 × 10–3 mM (Ru(TPTZ)23+). Saturated methanolic solutions of KI or 25% NaClO4 solutions desorbed both complexes quantitatively from the silica gel surface.  相似文献   

19.
The method is based on spectrophotometric determination of Fe(II) and Fe(III) at a single wavelength (530 nm) with the use of a dedicated reversed-flow injection system. In the system, EDTA solution is injected into a carrier stream (HNO3) and then merged with a sample stream containing a mixture of sulfosalicylic acid and 1,10-phenanthroline as indicators. In an acid environment (pH ≅ 3) the indicators form complexes with both Fe(III) and Fe(II), but EDTA replaces sulfosalicylic acid, forming a more stable colourless complex with Fe(III), whereas Fe(II) remains in a complex with 1,10-phenenthroline. As a result, the area and minimum of the characteristic peak can be exploited as measures corresponding to the Fe(III) and Fe(II) concentrations, respectively. The analytes were not found to affect each other's signals, hence two analytical curves were constructed with the use of a set of standard solutions, each containing Fe(II) and Fe(III). Both analytes were determined in synthetic samples within the concentration ranges of 0.05–4.0 and 0.09–6.0 mg L−1, respectively, with precision less than 1.5 and 2.6% (RSD) and with accuracy less than 4.3 and 5.6% (RE). The method was applied to determination of the analytes in water samples collected from artesian wells and the results of the determination were consistent with those obtained using the ICP-OES technique.  相似文献   

20.
The behavior of a modified carbon paste electrode (CPE) for simultaneous determination of copper(II) and silver(I) by anodic adsorptive stripping voltammetry (ASV) was studied. The electrode was built incorporating the bis(2‐hydroxyacetophenone) butane‐2,3‐dihydrazone (BHAB) as a complexing agent to a Nujol‐graphite base paste. The resulting electrode demonstrated linear responses over the range of Cu(II) and Ag(I) concentrations 0.1–20 and 0.01–2.0 µM respectively. The relative standard deviation (RSD) for the determination of 5.0 µM of both metal ions were 2.9 and 3.1 % for Cu(II) and Ag(I), respectively. The method has been applied to the analysis of copper in wheat and barley seed samples and silver in developed radiological film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号