首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
戴朝政  徐小平 《色谱》2020,38(5):581-586
研究了色谱分离过程中物质的径向扩散和流动相发热对柱效能的影响。从热传导方程出发,运用色谱过程动力学原理推导了包括考虑流动相径向扩散、色谱柱发热影响的液相色谱塔板高度方程:

该方程概括了高效液相色谱(HPLC)、超高效液相色谱(UPLC)、毛细管电色谱(CEC)和消滞留层液相色谱(ESFLC)塔板高度与各种因素的关系。方程最后一项代表了径向扩散和柱发热对塔板高度的贡献。当流动相线速度较低且柱内径较细时,流动相摩擦生热和径向扩散对塔板高度的贡献趋近于零,塔板高度方程还原成Horvath和Lin的方程;当流动相线速度较高时,由于流动相摩擦生热,柱轴心与边缘温差增加,导致流动相线速度径向分布差异,使得柱效率降低。柱轴心与边缘的温差与流动相线速度平方成正比。该文指出,在流动相高线速度情况下,液相色谱的柱效率与柱内径密切相关,采用细内径柱有利于实现高速与高效率;过高的流动相线速度将导致色谱柱效率崩溃。  相似文献   

2.
Although linear salt gradient elution ion-exchange chromatography (IEC) of proteins is commonly carried out with relatively short columns, it is still not clear how the column length affects the separation performance and the economics of the process. The separation performance can be adjusted by changing a combination of the column length, the gradient slope and the flow velocity. The same resolution can be obtained with a given column length with different combinations of the gradient slope and the flow velocity. This results in different separation time and elution volume at the same resolution. Based on our previous model, a method for determining the separation time and the elution volume relationship for the same resolution (iso-resolution curve) was developed. The effect of the column length and the mass transfer rate on the iso-resolution curve was examined. A long column and/or high mass transfer rate results in lesser elution volume. The resolution data with porous bead packed columns and monolithic columns were in good agreement with the calculated iso-resolution curves. Although the elution volume can be reduced with increasing column length, the pressure drop limits govern the optimum conditions.  相似文献   

3.
In this work, monolithic silica columns with the C4, C8, and C18 chemistry and having various macropore diameters and two different mesopore diameters are studied to access the differences in the column efficiency under isocratic elution conditions and the resolution of selected peptide pairs under reversed-phase gradient elution conditions for the separation of peptides and proteins. The columns with the pore structural characteristics that provided the most efficient separations are then employed to optimize the conditions of a gradient separation of a model mixture of peptides and proteins based on surface chemistry, gradient time, volumetric flow rate, and acetonitrile concentration. Both the mesopore and macropore diameters of the monolithic column are decisive for the column efficiency. As the diameter of the through-pores decreases, the column efficiency increases. The large set of mesopores studied with a nominal diameter of approximately 25 nm provided the most efficient column performance. The efficiency of the monolithic silica columns increase with decreasing n-alkyl chain length in the sequence of C18相似文献   

4.
Active flow management in the form of curtain flow sample introduction and segmented outlet flow control has been shown to enable sample to elute through a chromatography column under the principles of the "infinite diameter column". Such an elution process avoids the detrimental effects of the heterogeneity of particle-packed chromatographic columns by injecting the sample directly into the radial core region of the column, thus avoiding wall effects. The process described herein illustrates how the principles of the infinite diameter column can be applied using conventional injection devices suitable for long-term analysis that requires robust protocols. Using this approach, sensitivity in separation was 2.5 times greater than conventional chromatography, yielding a product at twice the concentration. Benefits of curtain flow injection are thus relevant to both preparative-scale and analytical-scale separations.  相似文献   

5.
Active Flow Management is a new separation technique whereby the flow of mobile phase and the injection of sample are introduced to the column in a manner that allows migration according to the principles of the infinite diameter column. A segmented flow outlet fitting allows for the separation of solvent or solute that elutes along the central radial section of the column from that of the sample or solvent that elutes along the wall region of the column. Separation efficiency on the analytical scale is increased by 25% with an increase in sensitivity by as much as 52% compared to conventional separations.  相似文献   

6.
在蛋白质组学研究中,多肽混合物的有效分离对蛋白质鉴定和蛋白质之间相互作用的研究起着决定性的影响。基于此,用反相液相色谱研究了在两个不同长度的色谱柱上分离多肽混合物时色谱柱长度与峰容量的关系,同时考察了梯度洗脱时间对峰容量和峰宽的影响。实验结果表明,色谱柱长度对峰容量有显著的影响,而延长梯度洗脱时间不仅可以增加峰容量,而且可以增加峰宽。这说明用毛细管液相色谱 串联质谱联用方法对多肽混合物进行分离鉴定时,采用较长的色谱柱和较长的梯度洗脱时间有利于对更多的多肽进行分析鉴定。  相似文献   

7.
为了对扩散分子的轨迹实施动态追踪与模拟, 深入理解分子扩散对色谱动力学的影响, 本文利用微尺度受限空间随机行走的模拟方法对色谱填充柱中的分子扩散过程进行了模拟. 重点考察了固定相的填充率、固定相的形状和柱长对色谱动力学行为的影响. 模拟结果表明短柱和大填充率具有较高的柱效; 在相同的密堆排列下, 固定相形状对分子扩散过程影响微弱; 待分离粒子的运动表现出微尺度空间限域的扩散特征, 但粒子的流动行为会随外部压力的增大而增加. 本论文提出的模拟方法对于发展高效能色谱, 开发新型分离技术等具有参考意义.  相似文献   

8.
The influence of Joule heating on electroosmotic flow velocity, the retention factor of neutral analytes, and separation efficiency in capillary electrochromatography was investigated theoretically and experimentally. A plot of electrical current against the applied electrical field strength was used to evaluate the Joule heating effect. When the mobile phase concentration of Tris buffer exceeded 5.0 mM in the studied capillary electrochromatography systems using particulate and monolithic columns (with an accompanying power level of heat dissipation higher than 0.35 W/m), the Joule heating effect became clearly noticeable. Theoretical models for describing the variation of electroosmotic flow velocity with increasing applied field strength and the change of retention factors for neutral analytes with electrical field strength at higher Tris buffer concentrations were analyzed to explain consequences of Joule heating in capillary electrochromatography. Qualitative agreement between experimental data and implications of the theoretical model analysis was observed. The decrease of separation efficiency in capillary electrochromatography with macroporous octadecylsilica particles at high buffer concentration can be also attributed to Joule heating mainly via the increased axial diffusion of the analyte molecules and dispersion of solute bands by a nonuniform electroosmotic flow profile over the column cross-section. However, within a moderate temperature range, the contribution of the macroscopic velocity profile in the column arising from radial temperature gradients is insignificant.  相似文献   

9.
Paproski RE  Cooley J  Lucy CA 《The Analyst》2006,131(3):422-428
Two approaches for decreasing diesel hydrocarbon group-type separation times by normal phase supercritical fluid chromatography (SFC) are compared. Short (10-15 cm) columns with small 3 microm diameter packing are compared with monolithic Chromolith bare silica columns under high carbon dioxide flow rates approaching 5 ml min(-1). Elution times are reduced up to 13-fold on a 10 cm Chromolith column and 7-fold on the short packed columns compared with conventional length columns run at typical flow rates. Short packed columns, with their higher surface area and retention characteristics, offer higher resolutions compared with Chromolith columns. Diesel samples are separated into saturates, mono-, di-, tri-, and polyaromatics in as little as 2 min on a 10 cm packed silica column. Diesel group-type results on a 15 cm titania-silica coupled column compare favorably with results from longer columns.  相似文献   

10.
To establish optimum operating conditions for high-speed gel-permeation chromatography (GPC), the effects of column packing particle size, solvent flow rate, and column length on the separation efficiency have been investigated by using monodisperse polystyrene samples and polystyrene gel columns (TSK-GEL column, Type-H). Decreasing the particle size of the column packing reduces the time required to obtain a given resolution. Monodisperse polystyrene standards were measured under the optimum operating conditions established (gel particle size 5 μ, column length 2 ft, flow rate 2.5 ml/min). The molecular weight distribution of a polymer mixture was determined in less than 10 min with the same accuracy as by the conventional GPC. Such short analysis time enables one to use GPC for in-plant quality control.  相似文献   

11.
Interest in liquid column chromatography, including ion exchange chromatography, as a separation method has increased markedly in the past few years. Numerous new automated analytical techniques, as well as applications for preparative or production-scale separations, have been developed. This has been particularly true in the areas pertaining to separation and analysis of biochemical mixtures such as physiologic fluids. The recent trend in ion exchange chromatography has been toward achieving two goals: high-resolution analysis in the case of complex mixtures, and high-speed separation when simpler mixtures are involved. In either case, the use of small-diameter ion exchange resin particles coupled with high flow rates (and, in some cases, long columns) requires operation at relatively high column inlet pressures, since the pressure drop through the ion exchange column is dependent on factors such as resin particle size, flow rate, and column length.  相似文献   

12.
Advanced instruments for liquid chromatography enables the operation of columns packed with sub-2 μm particles at the very high inlet pressures, up to 1000 bar, that are necessary to achieve the high column efficiency and the short analysis times that can be provided by the use of these columns. However, operating rather short columns at high mobile phase velocities, under high pressure gradients causes the production of a large amount of heat due to the viscous friction of the eluent percolating through the column bed. The evacuation of this heat causes the formation of significant axial and radial temperature gradients. Due to these thermal gradients, the retention factors of analytes and the mobile phase velocity are no longer constant throughout the column. The consequence of this heat production is a loss of column efficiency. We previously developed a model combining the heat and mass balance of the column, the equations of flow through porous media, and a linear isotherm model of the analyte. This model was solved and validated for conventional columns operated under moderate pressures. We report here on the results obtained when this model is applied to columns packed with very fine particles, operated under very high pressures. These results prove that our model accounts well for all the experimental results. The same column that elutes symmetrical, nearly Gaussian peaks at low flow rates, under relatively low pressure drops, provides strongly deformed, unsymmetrical peaks when operated at high flow rates, under high pressures, and under different thermal environments. The loss in column efficiency is particularly important when the column wall is kept at constant temperature, by immersing the column in a water bath.  相似文献   

13.
张梦婷  巩丹丹  孙万阳  孙国祥 《色谱》2018,36(10):1045-1052
径向展开薄层色谱法是一种将样品由中心沿径向向外展开的简便、快速、高效的色谱方法。该文组装了简单的径向展开薄层色谱装置,并建立了朱砂安神丸的径向展开薄层色谱检测法,对其中的生物碱成分进行分离,研究了径向展开薄层色谱的分离特性。从薄层色谱基础理论出发,对径向展开薄层色谱和一般薄层色谱的分离效能进行了比对研究,设计试验进行计算和求解。证明了径向展开薄层色谱法更快、更高效、更经济,适用于生物碱等高极性样品分离。探索了径向展开薄层色谱法高分离效率的理论根源,这一研究思路也为理论创新提供了新的方法和思路。  相似文献   

14.
An HETP equation for the capillary column is developed that takes into account the dependence of gaseous diffusion on pressure, the compressibility of the mobile phase, together with the unique relationship between mobile phase velocity, and the resistance to mass transfer in the stationary phase. The equation is used to develop a procedure for column optimization and expressions are derived that allow the optimum column radius and optimum column length to be calculated for a given fixed inlet pressure. It is shown that fast, simple separations are optimally achieved using relatively short small diameter columns. Conversely, optimum performance for the separation of complex mixtures requiring higher efficiencies requires the use of long columns with relatively large diameters.  相似文献   

15.
When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as “supercritical fluid chromatography” or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data.  相似文献   

16.
The performance of macro-porous particles in capillary electrochromatography is studied. Three reversed-phase stationary phases with pore diameters between 500 A and 4000 A have been tested for separation efficiency and mobile phase velocity. With these stationary phases, a large portion of the total flow appears to be through the pores of particles, thereby increasing the separation efficiency through a further decrease of the flow inhomogeneity and through enhancement of the mass transfer kinetics. The effects of pore size and mobile phase composition on the plate height and mobile phase velocity have been studied. With increasing buffer concentrations and larger pore diameters, higher mobile phase velocities and higher separation efficiencies have been obtained. Columns packed with 7 microns particles containing pores with a diameter of 4000 A generated up to 430,000 theoretical plates/m for retained compounds. Reduced plate heights as low as 0.34 have been observed, clearly demonstrating that a significant portion of the flow is through the pores. For the particles containing 4000 A pores no minimum was observed in the H-u plot up to linear velocities of 3.3 mm/s, suggesting that the separation efficiency is dominated by axial diffusion. On relatively long (72 cm) columns, efficiencies of up to 230,000 theoretical plates/column have been obtained under non-optimal running conditions. On short (8.3 cm) columns fast separations could be performed with approximately 15,000 theoretical plates generated in less than 30 s.  相似文献   

17.
Radial flow chromatography can be a solution for scaling up a packed bed chromatographic process to larger processing volumes. In this study we compared axial and radial flow affinity chromatography both experimentally and theoretically. We used an axial flow column and a miniaturized radial flow column with a ratio of 1.8 between outer and inner surface area, both with a bed height of 5 cm. The columns were packed with affinity resin to adsorb BSA. The average velocity in the columns was set equal. No difference in performance between the two columns could be observed. To gain more insight into the design of a radial flow column, the velocity profile and resin distribution in the radial flow column were calculated. Using mathematical models we found that the breakthrough performance of radial flow chromatography is very similar to axial flow when the ratio between outer and inner radius of the radial flow column is around 2. When this ratio is increased, differences become more apparent, but remain small. However, the ratio does have a significant influence on the velocity profile inside the resin bed, which directly influences the pressure drop and potentially resin compression, especially at higher values for this ratio. The choice between axial and radial flow will be based on cost price, footprint and packing characteristics. For small-scale processes, axial flow chromatography is probably the best choice, for resin volumes of at least several tens of litres, radial flow chromatography may be preferable.  相似文献   

18.
Peak capacity is the commonly used measure of separation efficiency in gradient elution. This study focuses on the effect of column characteristics (particle size and column length) and operating parameters (gradient time and flow rate) on the peak capacity for small molecule compounds in gradient elution. The goal of this study is to develop a practical strategy to maximize the separation efficiency (i.e., peak capacity) under different constraints (analysis time or pressure limit). Using both experimental data and theoretical modeling, the current study reveals that the peak capacity increases with both gradient time and column length in a non-linear fashion. Marginal peak capacity is proposed to characterize the non-linear increase of peak capacity over the gradient time and column length. This study also attempts to understand the maximum peak capacity achievable under certain pressure limits using Neue’s peak capacity model. The results of this study provide a better understanding of the UPLC technology, and can also help to develop practical strategies to maximize the separation efficiency in gradient elution to meet the separation needs.  相似文献   

19.
合成了聚硅氧烷键合离子液体[PSOMIM][NTf2],并将其用作快速气相色谱柱的固定相.初步探索了采用短柱及小内径毛细管柱(3 m×75 μm i.d.)时的分离性能及固定相膜厚对分离性能的影响.与常规柱(8m×0.25 mmi.d.)相比,在不损失分离度的前提下,分离速度可提高1~6倍;当膜厚为0.056 μm时,可以将分离速度提高2~4倍.实验结果表明,聚硅氧烷键合离子液体固定相可以有效弥补由于缩短柱长所导致的分离度减小的问题,在快速气相色谱固定相方面具有较好的应用前景.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号