首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary The reactions of manganese(II), cobalt(II) and nickel(II) acetates (1 mole) with antipyrine-4-azo--ethylcyanoacetate (HL1) and antipyrine-4-azo--acetylacetone (HL2) (1 mole) produce complexes of the M(L)2 type. K2PdCl4 (1 mole) reacts with HL1 and HL2 (1 mole) to yield complexes of the general formula PdLCl, the ligands behaving as monobasic tridentates. The electronic spectral and magnetic data show the complexes to be high-spin octahedral, whereas the palladium(II) complexes are diamagnetic square planar. The complexes were characterized by elemental analyses, conductance measurements and i.r. and electronic spectra as well as magnetic susceptibility measurements and thermal (t.g.a. and d.t.a.) analysis.Nuclear Material Authority.  相似文献   

2.
The tripodal tetraamine ligand N{(CH2)3NH2}{(CH2)2NH2}2 (pee), has been investigated as an asymmetrical tetraamine chelating agent for CoII, NiII, CuII, ZnII and CdII. The protonation constants for this ligand and the formation constants for its complexes have been determined potentiometrically in 0.1 M KCl at 25 °C. The successive protonation constants (log K n ) are: 10.22, 9.51, 8.78 and 1.60 (n = 1–4). One complex with formula M(pee)2+ (M = Co, Ni, Cu, Zn and Cd) is common to all five metal ions and the formation constant (log ML) is: 12.15, 14.17, 16.55, 13.35 or 9.74, respectively. In addition to the simple complexes, CoII, CuII and ZnII also give hydroxo complexes, and CuII and NiII give complexes with monoprotonated pee. [Zn(pee)](ClO4)2 and [Cd(pee)Cl](ClO4) complexes were isolated and are believed to have tetrahedral and trigonal-bipyramidal structures, respectively.  相似文献   

3.
Complexes of the general formula, ML2 [M = CuII, NiII, CoII and OVIV; L = 1,2,3,5,6,7,8,8a-octahydro-3-hydroxyimino-N-(4-X-phenyl)-l-phenyl-5-(phenylmethylene)-2-naphthalenecarboxamide (X = H, Me, OMe, Cl)] have been prepared and characterized on the basis of elemental analysis, magnetic moments and i.r., e.p.r. and electronic spectra. These metal complexes contain the N4 chromophore with the ligand coordinating through nitrogens of the azomethine and deprotonated anilide functions. C.v. measurements indicate that the copper(II) complexes are quasi-reversible in acetonitrile solution. Square planar and square pyramidal structures are assigned respectively to the copper(II) and oxovanadium(IV) complexes, whereas tetrahedral geometry is assigned to the nickel(II) and cobalt(II) complexes. Deprotonated anilide nitrogen is involved in coordination and the presence of an electron-donating group para to the anilide function decreases the ΔE values of the d–d transitions while the value is found to increase when electron-withdrawing groups are substituted. Line spacing in the e.p.r. spectra of the copper(II) and oxovanadium(IV) complexes increases when methyl group is para to the anilide group, and decreases when this group is replaced by methoxy or chloro. The ν(C–N) of the anilide group and the ν(C-N) of the azomethine function of the oxime metal complexes are metal-sensitive and the blue shift for the above stretching frequencies follows the order: copper(II) > oxovanadium(IV) > nickel(II) ≈ cobalt(II). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Template condensation between o-phthalaldehyde and 3,4-diaminotoluene resulted in mononuclear 16-membered tetraimine macrocyclic complexes, [MLCl2] [M?=?Co(II), Ni(II), Cu(II), and Zn(II)]. The proposed stoichiometry and the nature of the complexes have been deduced from elemental analyses, mass spectra, and molar conductance data. The macrocyclic framework has been inferred from ν(C=N) and ν(M–N) bands in the IR spectra and the resonances observed in 1H and 13C-NMR spectra. Octahedral geometry has been assigned for all these complexes on the basis of position of the bands in electronic spectra and magnetic moment data; distorted octahedral geometry has been assigned for the Cu(II) complex on the basis of EPR data. The low-conductivity data of all the complexes suggest their non-ionic nature. Interaction of these complexes with calf-thymus DNA (CT DNA) has been examined with fluorescence quenching experiments, which show that the complexes are avid binders of CT DNA.  相似文献   

5.
The possibility of ?-caprolactam (CPL) to coordinate to manganese(II), cobalt(II), and nickel(II) rhodanides has been investigated. New complexes trans-[M(CPL)4(NCS)2], where M = Mn (I), Co (II), and Ni (III), have been synthesized. The complexes have been studied by chemical analysis and IR spectroscopy. According to X-ray diffraction, complexes are isostructural to each other and crystallize in monoclinic space group P21/c, Z = 2. For I: a = 6.9457(2) ?, b = 17.7751(6) 0A, c = 12.8999(4) 0A, ?? = 104.2670(10)°, V = 1543.51(8) ?3, ??calc = 1.342 g/cm3, R 1 = 0.0426. For II: a = 6.8925(2) ?, b = 17.8189(8) ?, c = 12.7278(6) ?, ?? = 104.421(2)°, V = 1513.93(11) ?3, ??calc = 1.377 g/cm3, R 1 = 0.0280. For III: a = 6.7804(2) ?, b = 18.4631(4) ?, c = 12.4841(3) ?, ?? = 105.2950(10)°, V = 1507.49(7) ?3, ??calc = 1.382 g/cm3, R 1 = 0.0273. Structures I?CIII are molecular; the metal atom in each of them coordinates four CPL molecules and two NCS groups via oxygen and nitrogen atoms, respectively.  相似文献   

6.
Synthesis of volatile complexes based on -ketoimine pivalyltrifluoroacetone, C(CH3)3C(NH)CH2COCF3, is described. The general formula of the complexes is M(L)2, where M = Cu, Ni, Pd. Complexes of this kind with Ni and Pd were obtained for the first time. The Cu and Pd complexes were found to be isostructural. A comprehensive crystal-chemical study showed that all structures are molecular and built of trans-complexes. The central atom has a square plane environment. The average M-O and M-N distances are nearly equal in all compounds: 1.84 , 1.92 , and 1.98 for Ni, Cu, and Pd complexes, respectively; the mean values of the O-M-N chelate angles are 93.4°, 91.9°, and 92.7°, respectively.Original Russian Text Copyright © 2004 by I. A. Baidina, G. I. Zharkova, N. V. Pervukhina, S. A. Gromilov, and I. K. IgumenovTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 4, pp. 713–722, July–August, 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

7.
Three complexes containing 2-pyrazinecarboxylate (pzca–), including [Ni(pzca)2(H2O)2], [Co(pzca)2(H2O)2], and [Cu(pzca)2(H2O)2], have been synthesized and characterized using physico-chemical and spectroscopic methods. Furthermore, the structure of each complex was determined by single-crystal X-ray diffraction. All three complexes have an octahedral geometry, where the metal ion chelated by two carboxylate oxygens, two nitrogen atoms belonging to pyrazinic acid molecules, and two oxygen atoms of two water molecules. The catalytic activities of these complex-es were also investigated in the green synthesis of 2H-indazolo[2,1-b]phthalazine-triones by the reaction of hydrazine hydrate with an arylaldehyde, phthalic anhydride, and dimedone in acetic acid.  相似文献   

8.
Neutral complexes of Cu(II), Ni(II), Co(II), and Zn(II) have been synthesized from the oxamide-based ligand derived from leucine and diethyloxalate. The structural features have been deduced from their microanalytical, IR, UV/Vis, mass, 1H and 13C NMR spectral data. The Co(II) and Ni(II) chelates have octahedral geometries and the Cu(II) chelate is a square-pyramidal geometry. The non-electrolytic and monomeric nature of the complexes is shown by their magnetic susceptibility and low conductance data. The biological activities of the ligand and its metal chelates against gram-positive and negative bacteria and fungi are also reported. All the compounds are antimicrobially active and show higher activity than the free ligand.  相似文献   

9.
The formation of bimetallic Pd(II) and M = Fe(III), Ti(IV), V(V), Co(II), or Cu(II) complexes with the two-vacancy [As2W19O67(H2O)]14? heteropolyanion (HPA) (below referred to as As2W19) has been studied by UV/Vis and IR spectroscopy and differential dissolution. In an aqueous solution at pH 6 and a Pd: M: As2W19 molar ratio of 1: 1: 1, heteropoly complexes (HPC) incorporating two different metals one being Pd(II) are formed. The resulting complexes were precipitated from solution as cesium salts. In the case of Pd(II) and M = Fe(III), Co(II), or Cu(II) ions, the precipitate contained bimetallic HPC [As2W19FePDO67(H2O)2]9? (65.9 wt %), [As2W19CoPdO67(H2O)2]10? (45.6 wt %), and [As2W19CuPdO67(H2O)2]10? (50.7 wt %) mixed with monometallic HPC [As2W19M2O67(H2O)2](14 ? 2m)? (As2W19M2). In the case of Pd(II) and Ti(IV) or V(V), bimetallic HPC of a different composition were precipitated, namely, [As2W19Ti2O67(OH x )2 PdO](10 ? 2x)? (76.8 wt %) and [As2W19V2O67(OH x )2 PdO](8 ? 2x)? (15.0 wt %), where palladium ions are not incorporated in the HPC structure but are attached to the HPC surface, possibly, as hydroxide species. Using M = Pd(II), Ti(IV), V(V) ions and the HPA As2W19 ([M]: [As2W19] = 2 : 1, pH 6), new monometallic HPC, [As2W19Pd2O67(H2O)2]10?, [As2W19Ti2O67(OH x )2](10 ? 2x)?, and [As2W19V2O67(OH x )2](8 ? 2x)? (x = 0, 1, or 2), were obtained.  相似文献   

10.
Microwave chemistry is a green chemical method that improves reaction conditions and product yields while reducing solvent amounts and reaction times. The main aim of this article is to synthesize the tetradentate N2O2 ligand [HO(Ar)CH=N–(CH2)2–N=CH(Ar)OH] and manganese(II), cobalt(II), nickel(II), and zinc(II) complexes of the type ML by classical and microwave techniques. The resulting Schiff base and its complexes are characterized by 1H NMR, infrared, elemental analysis, and electronic spectral data. The ligand and its Co(II) and Mn(II) complexes were further identified by X-ray diffraction and mass spectra to confirm the structure. The results suggest that the metal is bonded to the ligand through the phenolic oxygen and the imino nitrogen.  相似文献   

11.
New mixed-ligand complexes, [M2(BAMP)(bipy)2][MCl4]2, M=Co+2(1), Cu+2(2), [M2(TAMEN)(bipy)2][MCl4]2, M=Fe+2(3), Co2+(4), and [Fe2(TAMEN)(bipy)2][FeCl6]2 (5), where BAMP and TAMEN stand for the Mannich bases N,N′-bis(antipyryl-4-methylene)-piperazine and N,N′-tetra(antipyryl-4-methylene)-1,2-ethane-diamine, respectively, have been obtained and characterized by elemental analyses, conductometric and magnetic susceptibility measurements at room temperature, mass spectrometry, UV-Vis, infrared, and mass spectroscopy, and 1H NMR spectra for the ligands.  相似文献   

12.
The N-pyrrolidine-N??-(2-chlorobenzoyl)thiourea, HL, and their Ni(II), Cu(II), and Co(III) complexes (NiL2, CuL2, and CoL3) have been synthesized and characterized. The thermal decomposition reactions of all the compounds have been investigated by DTA/TG combined systems. The mass spectroscopy technique has been used to identify the products during pyrolytic decomposition. The pyrolytic final products have been analyzed by X-ray powder diffraction method. After comparison of thermogravimetric and mass results of HL, NiL2, CuL2, and CoL3, the decomposition mechanism of these compounds have been suggested. The thermal stability of the Ni(II) and Cu(II) complexes according to the thermogravimetric curves follows the sequence: NiL2?<?CuL2. The values of the activation energy, E a, have been obtained using model-free (Kissenger?CAkahira?CSunose, KAS, Flyn?CWall?COzawa, FWO, and Isoconversional) methods for all decomposition stages. The E a versus the extent of conversion, ??, plots show that the values of E a varies as ??. Thirteen kinetic model equations have been tested for selecting correct reaction models. The optimized value of E a and Arrhenius factor, A, have been obtained using the best model equation. The thermodynamic functions (??H*, ??S*, and ??G*) have been calculated using these values.  相似文献   

13.
The preparation of the diamide ligand N,N-bis(2-carbamoylethyl)ethylenediamine (H2L) by Michael addition of ethylenediamine to acrylamide is described. The copper(II) complex [Cu(H2L)](ClO4)2 and the deprotonated complex [CuL]·H2O have been prepared and characterized as has the blue octahedral nickel(II) complex [Ni(H2L)](ClO4)2. The crystal structure of the carbonyl-oxygen-bonded copper(II) complex [Cu(H2L)] (ClO4)2 has been determined (R=5.5%). The stepwise protonation equilibria of the ligand have been studied by potentiometric titration, giving values of logK1= 8.71 and logK2=5.74 at 25°C and I=0.1moldm–3 (NaClO4). The interaction of copper(II) with the ligand (H2L/Cu(II)=1:1) can be fitted to the set of equilibria:With nickel(II), only two complexes, [Ni(H2L)]2+ and [NiL], occur and they have formation constants of log110=7.39 and log 11–2=–11.49. With palladium- (II) the system is similar to that with copper(II) with three complex species, 110, 11–1 and 11–2, with log 110=15.48, log 11–1=11.88 and log 11–2=7.32.  相似文献   

14.
The octahedral copper(II) complex with two 2-[1-(2-pyridinyl)ethylidene]oxalohydrazide molecules was synthesized from bis(acetylacetonato)copper(II) and 2-[1-(2-pyridinyl)ethylidene]oxamohydrazide (Hapsox). The complex is unstable when not in solution. X-ray analysis confirmed the tridentate coordination of the ligands in the monoanionic form. In addition, the stable tetrahedral copper(II) complex with one ligand molecule coordinated as a tridentate in the dianionic form was prepared by direct synthesis from Cu(NO3)2·3H2O and Hapsox, and characterized by elemental analysis, magnetic measurements and by i.r. and u.v./vis. spectrophotometry.  相似文献   

15.
Complexes [ML2] of cobalt(II), nickel(II), copper(II), zinc(II), and cadmium(II) with asymmetrically substituted (E)-3-ethyl-5-[(4-iodo-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl]-2,4-dimethyl-1H-pyrrole (HL) have been prepared and characterized for the first time. The spectral properties, stability in solutions and in the solid phase at elevated temperature of the complexes have been studied. The effects of complexing metal ion and the reaction medium on the spectral luminescent properties (absorptivity, quantum yield, fluorescence lifetime, and the radiation constant) and on thermal destruction of the [ML2] complexes have been discussed.  相似文献   

16.
Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of the type Na4[ML(H2O)2] of the ligand, 3,3′-bis[N,N-di(carboxymethyl)-aminomethyl]-o-cresol sulphonphthalein (Xylenol Orange, Na4H2L), have been synthesized and characterized by different physico-chemical (elemental analyses, solubility, electrolytic conductances, magnetic susceptibility measurements) and spectral (u.v.-vis, i.r., e.s.r., and powder X-ray diffraction) techniques for their structure determination. The data suggest 1?:?1 (M?:?L) compositions and octahedral geometries around M(II) except for Cu(II). Antifungal activity of the complexes measured against ten fungi show significant activity against Alternaria brassicicola, Alternaria solanai, Cercospora species and Helminthosporium oryzae and moderate antifungal activity against Curvularia species, Curvularia lunata, Curvularia penniseti, Colletotrichum capsici, Aspergillus niger, Aspergillus flavus Erysiphae pisi and Fusarium udum fungi.  相似文献   

17.
Summary [Fe2(-Cp)2(CNAr)4] (2) (540-01, C6H4Me-2, C6H4Et-2, C6H3Me2-2,4, C6H3Me2-2,6, C6H3(Me)Et-2,6, C6H3Et2-2,6 or C6H3 i-Pr2-2,6) react with I2 to give [Fe(-Cp)(CNAr)2I], but with Br2[Fe(-Cp) (CNAr)3]+ salts are the only products; IBr gives a mixture of the two. With SnX2 (X = F, Cl, Br or I) in refluxing n-butanol, (2) gives isolable [{Fe(-Cp)(CNAr)2}2SnX2] only when the CNAr ligands have two ortho substituents, otherwise decomposition occurred. When X = F, [Fe(-Cp) (CNAr)2SnF3] was also obtained from this reaction. Attempts to prepare [Fe(-Cp)(CNAr)2X] (X = Cl or Br) by reaction of (2) with HX in the presence of air gave rather unstable products which with SnX2 formed [Fe(-C5H5)-(CNAr)2SnX3]. Similar compounds, [Fe(-Cp) (CNAr)2 SnX2I], were obtained from [Fe(-Cp)-(CNAr)2I] and SnX2 (X = Cl or Br but not I). All of these complexes are much less stable than their Fe(-Cp)(CO)2 counterparts; all decompose in solution to [Fe(-Cp)(CNAr)3]+ which then break down to unidentified species. X-ray diffraction studies show that in [Fe(-Cp)(CNC6H3-i-Pr2-2,6)2I] and [{Fe(-Cp)(CNC6H3Me2-2,6)2}2SnBr2] there is pseudo-octahedral coordination about Fe. In the latter there is also distorted tetrahedral coordination about Sn so that its structure is very similar to that of [{Fe(-Cp)(CO)2}2SnCl2]. Spectroscopic studies show that in all complexes rotation of the aryl rings of the CNAr ligands cannot be slowed in solution, and that there is free rotation about all 540-02 bonds.  相似文献   

18.
The new complexes M(LH)2 (M = Pd,Pt), ML(M = Pd,Cu) and ML · H2O (M = Ni,Zn), where LH2 = N,N′-dimethylmonothio-oxamide, have been prepared. The complexes were characterized by metal analyses, thermal methods and spectral (i.r., Raman, u.v.—vis.) studies. The vibrational analyses of the complexes are given using NH/ND, CH3/CD3 and metal isotopic substitutions. The Ni(II), Pd(II), Pt(II) and Cu(II) compounds are square planar. The monoanion LH shows a chelated bidentate S,O-coordination, while the doubly deprotonated L2− acts as a bridging S,N/N,O-tetradentate ligand giving polymeric structures.  相似文献   

19.
Solid compounds of Cd(II), Hg(II) and Pb(II) with the sodium salt of morin-5′-sulfonic acid (NaMSA) were obtained. The molecular formula of the complexes are: Cd(C15H8O10SNa)2?·?6H2O, CdOH(C15H8O10SNa)?·?4H2O, Hg(C15H8O10S)?·?4H2O and Pb(C15H8O10S)?·?3H2O. Some of their physicochemical properties such as UV-Vis, infrared, 13C NMR and mass spectra, thermogravimetric analysis, and solubility were studied. On the basis of spectroscopic data NaMSA was bound to Cd2+ via 4C=O and 3C?–?oxygen and the Hg2+ and Pb2+ ions by 5C–OH, 4C=O and 3C–OH.  相似文献   

20.
A project related to the crystal engineering of hydrogen-bonded coordination complexes has been initiatied and some of our first results are presented here. The compounds [Mn(DMU)6](ClO4)2 (1), [Ni(DMU)6](ClO4)2 (2), [Cu(OClO3)2(DMU)4] (3) and [Zn(DMU)6](ClO4)2 (4) have all been prepared from the reaction of N,N-dimethylurea (DMU) and the appropriate hydrated metal perchlorate salt. Crystal structure determinations of the four compounds demonstrate the existence of [M(DMU)6]2+ cations and ClO4 counterions in (1), (2) and (4), whereas in (3) monodentate coordination of the perchlorate groups leads to molecules. The [M(DMU)6]2+ cations and ClO4 anions self-assemble to form a hydrogen-bonded one-dimensional (1D) architecture in (1) and different 2D hydrogen-bonded networks in (2) and (4). The hydrogen bonding functionalities on the molecules of (3) create a 2D structure. The complexes were also characterised by room-temperature effective magnetic moments and i.r. studies. The data are discussed in terms of the nature of bonding and the known structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号