首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary P450SU1 and P450SU2 are herbicide-inducible bacterial cytochrome P450 enzymes from Streptomyces griseolus. They have two of the highest sequence identities to camphor hydroxylase (P450cam from Pseudomonas putida), the cytochrome P450 with the first known crystal structure. We have built several models of these two proteins to investigate the variability in the structures that can occur from using different modeling protocols. We looked at variability due to alignment methods, backbone loop conformations and refinement methods. We have constructed two models for each protein using two alignment algorithms, and then an additional model using an identical alignment but different loop conformations for both buried and surface loops. The alignments used to build the models were created using the Needleman-Wunsch method, adapted for multiple sequences, and a manual method that utilized both a dotmatrix search matrix and the Needleman-Wunsch method. After constructing the initial models, several energy minimization methods were used to explore the variability in the final models caused by the choice of minimization techniques. Features of cytochrome P450cam and the cytochrome P450 superfamily, such as the ferredoxin binding site, the heme binding site and the substrate binding site were used to evaluate the validity of the models. Although the final structures were very similar between the models with different alignments, active-site residues were found to be dependent on the conformations of buried loops and early stages of energy minimization. We show which regions of the active site are the most dependent on the particular methods used, and which parts of the structures seem to be independent of the methods.  相似文献   

2.
4'-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-3'-buten-2'-ketoxime-N-O-alkyl ethers have been synthesized starting from alpha-ionone, separated into their E and Z isomers and characterized on the basis of (1)H-NMR and mass spectra.  相似文献   

3.
The gas chromatographic enantiomer separation of alpha-ionone was studied with three different chiral stationary phases using as chiral selectors: (1) heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin, dissolved in polysiloxane PS-086, (2) octakis(2,6-di-O-pentyl-3-O-trifluoroacetyl)-gamma-cyclodextrin and (3) octakis(2,6-di-O-pentyl-3-O-butanoyl)-gamma-cyclodextrin, both dissolved in polysiloxane SE-54. The influence of the concentration of the chiral selector in the polysiloxane, coated on Chromosorb P AW-DMCS 80-100 mesh, is described and discussed, as well as the effect of Chromosorb loading. The feasibility of the preparative gas chromatographic separation of the enantiomers of alpha-ionone is considered; in order to provide a term of comparison, the estimated performances are compared with those achieved in the separation of the enantiomers of the inhalation anaesthetic enflurane.  相似文献   

4.
5.
Direct electrochemistry of immobilized human cytochrome P450 2E1   总被引:3,自引:0,他引:3  
This communication reports the first electrochemical study of the human P450 2E1 either absorbed or covalently linked to different electrode surfaces. Glassy-carbon and gold electrodes gave reversible electrochemical signals of an active P450 2E1. Molecular modeling of the enzyme helped to rationalize the results. A monolayer coverage was obtained on gold modified with cystamine/maleimide that covalently linked surface accessible cysteines of P450 2E1. The midpoint potential measured for the oriented P450 2E1 was -177 +/- 5 mV comparable to that of the FeIII/FeII of other P450 enzymes. The observed electron-transfer rate for this electrode was 10 s-1. The turnover of the active enzyme was measured with the P450 2E1 specific substrate p-nitrophenol, resulting in a KM of 130 +/- 3 muM and the formation of 2.2 muM of the p-nitrocatechol product upon application of a -300 mV bias.  相似文献   

6.
Cytochrome P450 inhibitory promiscuity of a drug has potential effects on the occurrence of clinical drug-drug interactions. Understanding how a molecular property is related to the P450 inhibitory promiscuity could help to avoid such adverse effects. In this study, an entropy-based index was defined to quantify the P450 inhibitory promiscuity of a compound based on a comprehensive data set, containing more than 11,500 drug-like compounds with inhibition against five major P450 isoforms, 1A2, 2C9, 2C19, 2D6, and 3A4. The results indicated that the P450 inhibitory promiscuity of a compound would have a moderate correlation with molecular aromaticity, a minor correlation with molecular lipophilicity, and no relations with molecular complexity, hydrogen bonding ability, and TopoPSA. We also applied an index to quantify the susceptibilities of different P450 isoforms to inhibition based on the same data set. The results showed that there was a surprising level of P450 inhibitory promiscuity even for substrate specific P450, susceptibility to inhibition follows the rank-order: 1A2 > 2C19 > 3A4 > 2C9 > 2D6. There was essentially no correlation between P450 inhibitory potency and specificity and minor negative trade-offs between P450 inhibitory promiscuity and catalytic promiscuity. In addition, classification models were built to predict the P450 inhibitory promiscuity of new chemicals using support vector machine algorithm with different fingerprints. The area under the receiver operating characteristic curve of the best model was about 0.9, evaluated by 5-fold cross-validation. These findings would be helpful for understanding the mechanism of P450 inhibitory promiscuity and improving the P450 inhibitory selectivity of new chemicals in drug discovery.  相似文献   

7.
The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.  相似文献   

8.
Cytochromes P450 can catalyze various regioselective and stereospecific oxidation reactions of non‐functionalized hydrocarbons. Here, we have designed a novel light‐driven platform for cofactor‐free, whole‐cell P450 photo‐biocatalysis using eosin Y (EY) as a photosensitizer. EY can easily enter into the cytoplasm of Escherichia coli and bind specifically to the heme domain of P450. The catalytic turnover of P450 was mediated through the direct transfer of photoinduced electrons from the photosensitized EY to the P450 heme domain under visible light illumination. The photoactivation of the P450 catalytic cycle in the absence of cofactors and redox partners is successfully conducted using many bacterial P450s (variants of P450 BM3) and human P450s (CYPs 1A1, 1A2, 1B1, 2A6, 2E1, and 3A4) for the bioconversion of different substrates, including marketed drugs (simvastatin, lovastatin, and omeprazole) and a steroid (17β‐estradiol), to demonstrate the general applicability of the light‐driven, cofactor‐free system.  相似文献   

9.
An on-line HPLC screening method for detection of inhibitors of human cytochrome P450 1A2 in extracts was developed. HPLC separation of extracts is connected to a continuous methoxyresorufin-O-demethylation (MROD) assay in which recombinant human P450 1A2 converts methoxyresorufin to its fluorescent metabolite resorufin. The system was tested with three P450 1A2 inhibitors, for which minimum detectable amounts (MDA) ranging from 0.7 to 9.5 ng were obtained. Analysis of a kava kava and a basil extract showed that the on-line system is applicable to complex mixtures, since in both extracts, peaks with P450 1A2 inhibiting activity were observed.  相似文献   

10.
Crown-capped iron(S-) porphyrins 1 x H2O and 2 x H2O and their corresponding Ba2+ complexes have been prepared as active site analogues of the resting state of cytochrome P450cam. cw-EPR studies and electronic structure calculations at the density functional theory (DFT) level of model systems suggest a functional role of the water cluster of P450cam.  相似文献   

11.
Electrode potentials for every intermediate in the cytochrome P450 cycle were estimated and evaluated by means of an oxidation state diagram. By this approach, and within the uncertainties of the approximations, the superoxide complex of cytochrome P450 at pH 7 is oxidizing: E degrees ' (P450FeO(2)2+, H+/P450FeOOH2+) = +0.93 V, and the Gibbs energy for the reaction of the hydroperoxo complex of cytochrome P450 to form compound I and water, P450FeOOH2+ + H+ = P450FeO2+ por(*+) + H2O, is 0 kJ/mol. Although cytochrome P450FeOOH2+ and cytochrome P450FeO2+ por(*+) are approximately isoenergetic, they are likely to react at different rates with substrates and may yield different products. Homolysis of the hydroperoxo complex of cytochrome P450 to compound II and the hydroxyl radical, P450FeOOH2+ = P450FeO2+ + HO(*), is unfavorable (DeltaG degrees ' = +92 kJ/mol), as is the dissociation into HOO- and cytochrome P450Fe3+ (+73 kJ/mol). It is shown that the sum of the Gibbs energy of association for cytochrome P450Fe3+ with the hydroperoxo anion and the Gibbs energy for the one-electron reduction of cytochrome P450FeOOH2+, relative to NHE, is constant (-203 kJ/mol). While the estimated E degrees ' (P450FeO(2)2+, H+/P450FeOOH2+) = +0.93 V at pH 7 is larger than necessary to effect reduction of cytochrome P450FeO(2)2+, the magnitude of this electrode potential implies that the binding constant for cytochrome P450Fe3+ with hydrogen peroxide is ca. 3 x 106 M(-1) at pH 7. An association constant of this magnitude ensures that a fraction of cytochrome P450FeOOH2+ is available to form compound I or to react with substrates directly, while a larger one would imply that compound I is too weak an oxidant. In general, the energetics of the reduction of dioxygen to water determines the energetics of catalysis of hydroxylations by cytochrome P450. These results enable calibration of energy levels obtained for intermediates in the cytochrome P450 reaction cycle obtained by ab initio calculations and provide insights into the catalytic efficiency of cytochrome P450 and guidelines for the development of competent hydroxylation catalysts.  相似文献   

12.
The metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs) is thought to be mediated primarily by the cytochromes P450 (P450s) from the 2 family (2C9, 2C19, 2D6, and 2J2). In contrast, P450s of the 4 family are primarily involved in omega oxidation of AA (4A11 and 4A22). The ability to determine enantioselective formation of the regioisomeric EETs is important in order to establish their potential biological activities and to asses which P450 isoforms are involved in their formation. It has been extremely difficult to analyze individual EET enantiomers in biological fluids because they are present in only trace amounts and they are extremely difficult to separate from each other. In addition, the deuterium-labeled internal standards that are commonly used for stable isotope dilution liquid chromatography/mass spectrometry (LC/MS) analyses have different LC retention times when compared with the corresponding protium forms. Therefore, quantification by LC/MS-based methodology can be compromised by differential suppression of ionization of the closely eluting isomers. We report the preparation of [(13)C(20)]-EET analog internal standards and the use of a validated high-sensitivity chiral LC/electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the trace analysis of endogenous EETs as their pentafluorobenzyl (PFB) ester derivatives. The assay was then used to show the exquisite enantioselectivity of P4502C19-, P4502D6-, P4501A1-, and P4501B1-mediated conversion of AA into EETs and to quantify the enantioselective formation of EETs produced by AA metabolism in a mouse epithelial hepatoma (Hepa) cell line.  相似文献   

13.
The growing need for the characterization of cytochrome P450 (P450) metabolites often necessitates their synthesis up to Gram-scale. This task may in principle be achieved by using various techniques including chemical synthesis, the use of laboratory animals, in vitro P450 systems or microbial biotransformation. However, these approaches are in many instances unfavorable due to low yields, laborious purification, costs of cofactors, or the formation of non-physiologic metabolites. The fission yeast Schizosaccharomyces pombe has previously been shown by others and us to be very well suited for the heterologous expression of human P450s. In this study, we demonstrate whole-cell biotransformation reactions carried out with fission yeast strains that coexpress human cytochrome P450 reductase (CPR) and one of the following P450 isoforms: CYP2B6, CYP2C9, CYP2C19, CYP2D6, or CYP3A4, respectively. These strains could successfully convert their respective standard substrates but showed different responses with respect to incubation pH, the presence of glucose, and temperature, respectively. In addition, the preparative of synthesis of 2.8?g of 4'-hydroxydiclofenac was achieved by whole-cell biotransformation of diclofenac using a CPR-CYP2C9 coexpressing fission yeast strain.  相似文献   

14.
Intramolecular kinetic isotope effects (KIEs) were determined for cytochrome P450-catalyzed hydroxylation reactions of methyl-dideuterated trans-2-phenylcyclopropylmethane-d2 (1-d2), which gives two products from oxidation of the methyl group, trans-2-phenylcyclopropylmethanol (2) and 1-phenyl-3-buten-1ol (3). In oxidations of each enantiomer of 1-d2 with three P450 enzymes (CYP2B1, CYPDelta2E1, and CYPDelta2E1 T303A), the apparent intramolecular KIEs were different for products 2 and 3 in all cases and different for each enzyme-substrate combination. In oxidations of each enantiomer of undeuterated 1-d0 and trideuteriomethyl 1-d3 by CYP2B1 and CYPDelta2E1, the ratio of products 2/3 decreased for 1-d3 in comparison to 1-d0 in all cases. The results require multiple pathways for P450-catalyzed hydroxylation and are consistent with the "two-oxidants" model, where hydroxylation is effected by both the hydroperoxy-iron species and the iron-oxo species. The results are not consistent with predictions of the "two-states" model for P450-catalyzed hydroxylations, where oxidations occur from a low-spin state and a high-spin state of iron-oxo.  相似文献   

15.
The three-dimensional modelling of proteins is a useful tool to fill the gap between the number of sequenced proteins and the number of experimentally known 3D structures. However, when the degree of homology between the protein and the available 3D templates is low, model building becomes a difficult task and the reliability of the results depends critically on the correctness of the sequence alignment. For this reason, we have undertaken the modelling of human cytochrome P450 1A2 starting by a careful analysis of several sequence alignment strategies (multiple sequence alignments and the TOPITS threading technique). The best results were obtained using TOPITS followed by a manual refinement to avoid unlikely gaps. Because TOPITS uses secondary structure predictions, several methods that are available for this purpose (Levin, Gibrat, DPM, NnPredict, PHD, SOPM and NNSP) have also been evaluated on cytochromes P450 with known 3D structures. More reliable predictions on -helices have been obtained with PHD, which is the method implemented in TOPITS. Thus, a 3D model for human cytochrome P450 1A2 has been built using the known crystal coordinates of P450 BM3 as the template. The model was refined using molecular mechanics computations. The model obtained shows a consistent location of the substrate recognition segments previously postulated for the CYP2 family members. The interaction of caffeine and a carcinogenic aromatic amine (MeIQ), which are characteristic P450 1A2 substrates, has been investigated. The substrates were solvated taking into account their molecular electrostatic potential distributions. The docking of the solvated substrates in the active site of the model was explored with the AUTODOCK programme, followed by molecular mechanics optimisation of the most interesting complexes. Stable complexes were obtained that could explain the oxidation of the considered substrates by cytochrome P450 1A2 and could offer an insight into the role played by water molecules.  相似文献   

16.
Multiple oxidants have been implicated as playing a role in cytochrome P450-mediated oxidations. Herein, we report results on N-dealkylation, one of the most facile reactions mediated by P450 enzymes. We have employed the N-oxides of a series of para-substituted 13C2H2-labeled N,N-dimethylanilines to function as both substrates and surrogate oxygen atom donors for P450cam and P4502E1. Kinetic isotope effect profiles obtained using the N-oxide system were found to closely match the profiles produced using the complete NAD(P)H/NAD(P)-P450 reductase/O2 system. The results are consistent with oxidation occurring solely through an iron-oxene species.  相似文献   

17.
The natural catalytic cycle of cytochrome (cyt) P450 enzymes in human liver microsome (HLM) films was activated electrochemically via the electron transfer sequence electrode→cyt P450 reductase (CPR)→cyt P450. Cyclic voltammograms for HLM films had midpoint potentials of ?0.50 V vs. SCE at pH 7.4 characteristic of CPR, not cyt P450s. HLM and CPR microsomes without cyt P450s did not electrocatalytically reduce H2O2, and did not shift midpoint potential when CO was added, also indicating that the peaks do not correspond to iron heme cyt P450 enzymes. Electrochemical activation of the natural cyt P450 cycle for substrate conversion via CPR in HLM films was confirmed by catalytic electrolysis in an electrochemical microfluidic array designed to generate and detect reactive metabolites by measuring their reactivity with DNA.  相似文献   

18.
The influences of thioketo substitution on the properties of uracil monomer and dimer and their interactions with Zn2+ have been systematically investigated at the B3LYP/6-311+G*level of theory. Those properties include the structural characteristics, acidities, ionization potentials, and singlet–triplet energy gaps of SU monomers and their dimers, where SU=2-thiouracil, 4-thiouracil, and 2,4-dithiouracil, respectively. Computational results suggest that thioketo substitution leads to an increase in the acidities of the N-H groups for both uracil and its dimer, where the N1–H group is still the most acidic site relative to that of N3–H group. However, the opposite behaviors are true for the ionization potentials and the singlet–triplet energy gaps of uracil monomer and its dimer, suggesting that thiouracils are more susceptible to radiation damage relative to the unsubstituted uracil. For uracil and 2-thiouracil, the corresponding triplet excited-state geometries are predicted to be highly nonplanar compared with the planar geometries of the ground state as well as 4-thiouracil and 2,4-dithiouracil upon triplet excitation. As a rule, the intermolecular H-bonds involving the sulfur atom directly have been influenced more significant than those the oxygen atom directly involved for U::U and SU::SU base pairs upon ionization and excitation. Additionally, Zn2+ binding is expected to lead to an increase in the stability of U::U and SU::SU base pairs.  相似文献   

19.
A recent novel strategy for constructing artificial metalloenzymes (ArMs) that target new-to-nature functions uses dual-functional small molecules (DFSMs) with catalytic and anchoring groups for converting P450BM3 monooxygenase into a peroxygenase. However, this process requires excess DFSMs (1000 equivalent of P450) owing to their low binding affinity for P450, thus severely limiting its practical application. Herein, structural optimization of the DFSM-anchoring group considerably enhanced their binding affinity by three orders of magnitude (Kd≈10−8 M), thus approximating native cofactors, such as FMN or FAD in flavoenzymes. An artificial cofactor-driven peroxygenase was thus constructed. The co-crystal structure of P450BM3 bound to a DFSM clearly revealed a precatalytic state in which the DFSM participates in H2O2 activation, thus facilitating peroxygenase activity. Moreover, the increased binding affinity substantially decreases the DFSM load to as low as 2 equivalents of P450, while maintaining increased activity. Furthermore, replacement of catalytic groups showed disparate selectivity and activity for various substrates. This study provides an unprecedented approach for assembling ArMs by binding editable organic cofactors as a co-catalytic center, thereby increasing the catalytic promiscuity of P450 enzymes.  相似文献   

20.
Cytochrome P450 enzymes are the predominant mediators of phase I metabolism of exogenous small molecules. As a result of their extensive role in metabolism of xenobiotics, drug compounds, and endogenous compounds, as well as their wide tissue distribution, significant drug discovery resources are spent to avoid interacting with this class of enzymes. Here we review historical and recent in silico modeling of 7 cytochrome P450 enzymes of particular interest, specifically CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. For each we provide a brief biological background including known inhibitors, substrates, and inducers, as well as details of computational modeling efforts and advances in structural biology. We also provide similar details for 3 nuclear receptors known to regulate gene expression of these enzyme families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号