首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polygon, whose vertices are points in a given setA ofn points, is defined to be a Steiner polygon ofA if all Steiner minimal trees forA lie in it. Cockayne first found that a Steiner polygon can be obtained by repeatedly deleting triangles from the boundary of the convex hull ofA. We generalize this concept and give a method to construct Steiner polygons by repeatedly deletingk-gons,k n. We also prove the uniqueness of Steiner polygons obtained by our method.  相似文献   

2.
Approximations for Steiner Trees with Minimum Number of Steiner Points   总被引:1,自引:0,他引:1  
Given n terminals in the Euclidean plane and a positive constant, find a Steiner tree interconnecting all terminals with the minimum number of Steiner points such that the Euclidean length of each edge is no more than the given positive constant. This problem is NP-hard with applications in VLSI design, WDM optical networks and wireless communications. In this paper, we show that (a) the Steiner ratio is 1/ 4, that is, the minimum spanning tree yields a polynomial-time approximation with performance ratio exactly 4, (b) there exists a polynomial-time approximation with performance ratio 3, and (c) there exists a polynomial-time approxi-mation scheme under certain conditions.  相似文献   

3.
4.
The Steiner tree problem in Euclidean space $E^3$ asks for a minimum length network $T$ , called a Euclidean Steiner Minimum Tree (ESMT), spanning a given set of points. This problem is NP-hard and the hardness is inherently due to the number of feasible topologies (underlying graph structure of $T$ ) which increases exponentially as the number of given points increases. Planarity is a very strong condition that gives a big difference between the ESMT problem in the Euclidean plane $E^2$ and in Euclidean $d$ -space $E^d (d\ge 3)$ : the ESMT problem in the plane is practically solvable whereas the ESMT problem in $d$ -space is really intractable. The simplest tree rearrangement technique is to repeatedly replace a subtree spanning four nodes in $T$ with another subtree spanning the same four nodes. This technique is referred to as the Swapping 4-point Topology/ Tree technique in this paper. An indicator (or quasi-indicator) of $T$ plays a similar role in the optimization of the length $L(T)$ of $T$ in the discrete topology space (the underlying graph structure of $T$ ) to the derivative of a differentiable function which indicates a fastest direction of descent. $T$ will be called S4pT-optimal if it is optimal with respect to swapping 4-point subtrees. In this paper we first make a complete analysis of 4-point trees in Euclidean space exploring all possible types of 4-point trees and their properties. We review some known indicators of 4-point ESMTs in $E^2$ , and give some simple geometric proofs of these indicators. Then, we translate these indicators to $E^3$ , producing eight quasi-indicators in $E^3$ using computational experiments, the best quasi-indicator $\rho _\mathrm{osr}$ is sifted with an effectiveness for randomly generated 4-point sets as high as 98.62 %. Finally we show how $\rho _\mathrm{osr}$ is used to find an S4pT-optimal ESMT on 14 probability vectors in $4d$ -space with a detailed example.  相似文献   

5.
A gradient-constrained discounted Steiner tree is a network interconnecting given set of nodes in Euclidean space where the gradients of the edges are all no more than an upper bound which defines the maximum gradient. In such a tree, the costs are associated with its edges and values are associated with nodes and are discounted over time. In this paper, we study the problem of optimally locating a single Steiner point in the presence of the gradient constraint in a tree so as to maximize the sum of all the discounted cash flows, known as the net present value (NPV). An edge in the tree is labelled as a b edge, or a m edge, or an f edge if the gradient between its endpoints is greater than, or equal to, or less than the maximum gradient respectively. The set of edge labels at a discounted Steiner point is called its labelling. The optimal location of the discounted Steiner point is obtained for the labellings that can occur in a gradient-constrained discounted Steiner tree. In this paper, we propose the gradient-constrained discounted Steiner point algorithm to optimally locate the discounted Steiner point in the presence of a gradient constraint in a network. This algorithm is applied to a case study. This problem occurs in underground mining, where we focus on the optimization of underground mine access to obtain maximum NPV in the presence of a gradient constraint. The gradient constraint defines the navigability conditions for trucks along the underground tunnels.  相似文献   

6.
Steiner最小树问题是组合优化中经典的NP难题,在许多实际问题中有着广泛的应用,而三维欧氏Steiner最小树问题是对二维欧氏Steiner最小树问题的推广。由于三维欧氏Steiner树问题的求解非常困难,至今为止的相关成果较为少见。本文针对该问题,利用Delaunay四面体网格剖分技术,提出了一种混合型智能求解方法,不仅可以尽量避免拓扑结构陷入局部最优,且对较大规模的问题求解亦有良好的效果。算法在Matlab环境下编程实现,经实例测试,获得了满意的效果。  相似文献   

7.
The problem of constructing Steiner minimal trees in the Euclidean plane is NP-hard. When in addition obstacles are present, difficulties of constructing obstacle-avoiding Steiner minimal trees are compounded. This problem, which has many obvious practical applications when designing complex transportation and distribution systems, has received very little attention in the literature. The construction of Steiner minimal trees for three terminal points in the Euclidean plane (without obstacles) has been completely solved (among others by Fermat, Torricelli, Cavallieri, Simpson, Heinen) during the span of the last three centuries. This construction is a cornerstone for both exact algorithms and heuristics for the Euclidean Steiner tree problem with arbitrarily many terminal points. An algorithm for three terminal points in the presence of one polygonal convex obstacle is given. It is shown that this algorithm has the worst-case time complexityO(n), wheren is the number of extreme points on the obstacle. As an extension to the underlying algorithm, if the obstacle is appropriately preprocessed inO(n) time, we can solve any problem instance with three arbitrary terminal points and the preprocessed convex polygonal obstacle inO(logn) time. We believe that the three terminal points algorithm will play a critical role in the development of heuristics for problem instances with arbitrarily many terminal points and obstacles.  相似文献   

8.
The Euclidean Steiner minimal tree problem is known to be an NP-complete problem and current alogorithms cannot solve problems with more than 30 points. Thus decomposition theorems can be very helpful in extending the boundary of workable problems. There have been only two known decomposition theorems in the literature. This paper provides a 50% increase in the reservoir of decomposition theorems.  相似文献   

9.
The problem of constructing a spanning tree for a graph G = (V, E) with n vertices whose maximal degree is the smallest among all spanning trees of G is considered. This problem is easily shown to be NP-hard. In the Steiner version of this problem, along with the input graph, a set of distinguished vertices D V is given. A minimum-degree Steiner tree is a tree of minimum degree which spans at least the set D. Iterative polynomial time approximation algorithms for the problems are given. The algorithms compute trees whose maximal degree is at most Δ* + 1, where Δ* is the degree of some optimal tree for the respective problems. Unless P = NP, this is the best bound achievable in polynomial time.  相似文献   

10.
We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to σ ≥ 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide a simple proof that the angle configuration for a Steiner point extends to all Steiner points in a full Steiner minimum tree, such that at most six orientations suffice for edges in a full Steiner minimum tree. We show that the concept of canonical forms originally introduced for the uniform orientation metric generalises to the fixed orientation metric. Finally, we give an O(σ n) time algorithm to compute a Steiner minimum tree for a given full Steiner topology with n terminal leaves.  相似文献   

11.
The Euclidean Steiner tree problem is to find the tree with minimal Euclidean length spanning a set of fixed points in the plane, allowing the addition of auxiliary points to the set (Steiner points). The problem is NP-hard, so polynomial-time heuristics are desired. We present two such heuristics, both of which utilize an efficient method for computing a locally optimal tree with a given topology. The first systematically inserts Steiner points between edges of the minimal spanning tree meeting at angles less than 120 degrees, performing a local optimization at the end. The second begins by finding the Steiner tree for three of the fixed points. Then, at each iteration, it introduces a new fixed point to the tree, connecting it to each possible edge by inserting a Steiner point, and minimizes over all connections, performing a local optimization for each. We present a variety of test cases that demonstrate the strengths and weaknesses of both algorithms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Finding a shortest network interconnecting a given set of points in a metric space is called the Steiner minimum tree problem. The Steiner ratio is the largest lower bound for the ratio between lengths of a Steiner minimum tree and a minimum spanning tree for the same set of points. In this paper, we show that in a metric space, if the Steiner ratio is less than one and finding a Steiner minimum tree for a set of size bounded by a fixed number can be performed in polynomial time, then there exists a polynomialtime heuristic for the Steiner minimum tree problem with performance ratio bigger than the Steiner ratio. It follows that in the Euclidean plane, there exists a polynomial-time heuristic for Steiner minimum trees with performance ratio bigger than . This solves a long-standing open problem.Part of this work was done while this author visited the Department of Computer Science, Princeton University, supported in part by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, under NSF grant STC88-09648, supported in part by NSF grant No. CCR-8920505, and also supported in part by the National Natural Science Foundation of China.  相似文献   

13.
A Steiner minimal treeS is a network of shortest possible length connecting a set ofn points in the plane. LetT be a shortest tree connecting then points but with vertices only at these points.T is called a minimal spanning tree. The Steiner ratio conjecture is that the length ofS divided by the length ofT is at least 3/2. In this paper we use a variational approach to show that if then points lie on a circle, then the Steiner ratio conjecture holds.  相似文献   

14.
 The Steiner tree problem on surfaces is more complicated than the corresponding one in the Euclidean plane. There are not many results on it to date. In this paper we first make a comparison of Steiner minimal trees on general curved surfaces with Steiner minimal trees in the Euclidean plane. Then, we focus our study on the Steiner trees on spheres. In particular, we detail the properties of locally minimal Steiner points, and the Steiner points for spherical triangles. Received: August 18, 1997 Final version received: March 16, 1998  相似文献   

15.
LetG=(V, E) be a graph andTV be a node set. We call an edge setS a Steiner tree forT ifS connects all pairs of nodes inT. In this paper we address the following problem, which we call the weighted Steiner tree packing problem. Given a graphG=(V, E) with edge weightsw e , edge capacitiesc e ,eE, and node setT 1,…,T N , find edge setsS 1,…,S N such that eachS k is a Steiner tree forT k , at mostc e of these edge sets use edgee for eacheE, and the sum of the weights of the edge sets is minimal. Our motivation for studying this problem arises from a routing problem in VLSI-design, where given sets of points have to be connected by wires. We consider the Steiner tree packing problem from a polyhedral point of view and define an associated polyhedron, called the Steiner tree packing polyhedron. The goal of this paper is to (partially) describe this polyhedron by means of inequalities. It turns out that, under mild assumptions, each inequality that defines a facet for the (single) Steiner tree polyhedron can be lifted to a facet-defining inequality for the Steiner tree packing polyhedron. The main emphasis of this paper lies on the presentation of so-called joint inequalities that are valid and facet-defining for this polyhedron. Inequalities of this kind involve at least two Steiner trees. The classes of inequalities we have found form the basis of a branch & cut algorithm. This algorithm is described in our companion paper (in this issue).  相似文献   

16.
It is known that given any convex bodyK ⊂ ℝ n there is a sequence of suitable iterated Steiner symmetrizations ofK that converges, in the Hausdorff metric, to a ball of the same volume. Hadwiger and, more recently, Bourgain, Lindenstrauss and Milman have given estimates from above of the numberN of symmetrizations necessary to transformK into a body whose distance from the equivalent ball is less than an arbitrary positive constant. In this paper we will exhibit some examples of convex bodies which are “hard to make spherical”. For instance, for any choice of positive integersn≥2 andm, we construct ann-dimensional convex body with the property that any sequence ofm symmetrizations does not decrease its distance from the ball. A consequence of these constructions are some lower bounds on the numberN.  相似文献   

17.
A Steiner minimal tree (SMT) for a set of pointsP in the plane is a shortest network interconnectingP. The construction of a SMT for a general setP is known to be anNP-complete problem. Recently, SMTs have been constructed for special setsP such as ladders, splitting trees, zigzag lines and co-circular points. In this paper we study SMTs for a wide class of point-sets called mild bar wave. We show that a SMT for a mild bar wave must assume a special form, thus the number of trees needed to be inspected is greatly reduced. Furthermore if a mild bar wave is also a mild rectangular wave, then we produce a Steiner tree constructible in linear time whose length can exceed that of a SMT by an amount bounded by the difference in heights of the two endpoints of the rectangular wave, thus independent of the number of points. When a rectangular wave satisfies some other conditions (including ladders as special cases), then the Steiner tree we produced is indeed a SMT.  相似文献   

18.
We give a new lower bound on the length of the minimal Steiner tree with a given topology joining given terminals in Euclidean space, in terms of toroidal images. The lower bound is equal to the length when the topology is full. We use the lower bound to prove bounds on the “error” e in the length of an approximate Steiner tree, in terms of the maximum deviation d of an interior angle of the tree from 120°. Such bounds are useful for validating algorithms computing minimal Steiner trees. In addition we give a number of examples illustrating features of the relationship between e and d, and make a conjecture which, if true, would somewhat strengthen our bounds on the error. J. H. Rubinstein, J. Weng: Research supported by the Australian Research Council N. Wormald: Research supported by the Australian Research Council and the Canada Research Chairs Program. Research partly carried out while the author was in the Department of Mathematics and Statistics, University of Melbourne  相似文献   

19.
Given a node-weighted connected graph and a subset of terminals, the problem node-weighted Steiner tree (NWST) seeks a lightest tree connecting a given set of terminals in a node-weighted graph. While NWST in general graphs are as hard as Set Cover, NWST restricted to unit-disk graphs (UDGs) admits constant-approximations. Recently, Zou et al. (Lecture notes in computer science, vol 5165, COCOA, 2008, pp 278–285) showed that any μ-approximation algorithm for the classical edge-weighted Steiner tree problem can be used to produce 2.5 μ-approximation algorithm for NWST restricted to UDGs. With the best known approximation bound 1.55 for the classical Steiner tree problem, they obtained an approximation bound 3.875 for NWST restricted to UDGs. In this paper, we present three approximation algorithms for NWST restricted to UDGs, the k-Restricted Relative Greedy Algorithm whose approximation bound converges to 1 + ln 5 ≈ 2.61 as k → ∞, the 3-Restricted Greedy Algorithm with approximation bound 4\frac13{4\frac{1}{3}} , and the k-Restricted Variable Metric Algorithm whose approximation bound converges to 3.9334 as k → ∞.  相似文献   

20.
LetS = {A, B, C, D} consist of the four corner points of a convex quadrilateral where diagonals [A, C] and [B, D] intersect at the pointO. There are two possible full Steiner trees forS, theAB-CD tree hasA andB adjacent to one Steiner point, andC andD to another; theAD-BC tree hasA andD adjacent to one Steiner point, andB andC to another. Pollak proved that if both full Steiner trees exist, then theAB-CD (AD-BC) tree is the Steiner minimal tree if AOD>3 (<) 90°, and both are Steiner minimal trees if AOD=90°. While the theorem has been crucially used in obtaining results on Steiner minimal trees in general, its applicability is sometimes restricted because of the condition that both full Steiner trees must exist. In this paper we remove this obstacle by showing: (i) Necessary and sufficient conditions for the existence of either full Steiner tree forS. (ii) If AOD90°, then theAB-CD tree is the SMT even if theAD-BC tree does not exist. (iii) If AOD<90° but theAD-BC tree does not exist, then theAB-CD tree cannot be ruled out as a Steiner minimal tree, though under certain broad conditions it can.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号