首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The transmission loss of sound through infinite orthogonally rib-stiffened double-panel structures having cavity-filling fibrous sound absorptive materials is theoretically investigated. The propagation of sound across the fibrous material is characterized using an equivalent fluid model, and the motions of the rib-stiffeners are described by including all possible vibrations, i.e., flexural displacements, bending, and torsional rotations. The effects of fluid-structure coupling are account for by enforcing velocity continuity conditions at fluid-panel interfaces. By taking full advantage of the periodic nature of the double-panel, the space-harmonic approach and virtual work principle are applied to solve the sets of resultant governing equations, which are eventually truncated as a finite system of simultaneous algebraic equations and numerically solved insofar as the solution converges. To validate the proposed model, a comparison between the present model predictions and existing numerical and experimental results for a simplified version of the double-panel structure is carried out, with overall agreement achieved. The model is subsequently employed to explore the influence of the fluid-structure coupling between fluid in the cavity and the two panels on sound transmission across the orthogonally rib-stiffened double-panel structure. Obtained results demonstrate that this fluid-structure coupling affects significantly sound transmission loss (STL) at low frequencies and cannot be ignored when the rib-stiffeners are sparsely distributed. As a highlight of this research, an integrated optimal algorithm toward lightweight, high-stiffness and superior sound insulation capability is proposed, based on which a preliminary optimal design of the double-panel structure is performed.  相似文献   

2.
The control of sound transmission through panels is an important noise control problem in the aerospace, aeronautical, and automotive industries. The trend towards using lightweight composite materials that have lower sound insulation performance is a negative factor regarding low frequency transmission loss. Double-panel partitions with the gap filled with sound absorption materials are often employed to improve the sound insulation performance with reduced added weight penalty. However, in the low frequency range, the strong coupling between the panels through the air cavity and mechanical paths may greatly reduce the sound transmission performance, making it even lower than the performance of a single panel in some frequency ranges. In this work, an experimental investigation of a new kind of hybrid (active/passive) acoustic actuator is presented. The idea consists of replacing the acoustic absorption material by a hybrid actuator aiming at improving the transmission loss at low frequencies without altering the passive attenuation. A prototype of the system is tested in a plane wave acoustic tube setup. Different kinds of SISO feedforward control implementations were used to attenuate the sound power transmitted through the hybrid active–passive panel using an error microphone or a particle velocity sensor placed downstream with respect to the sample panel. Measurement results of the transmission loss with active and hybrid attenuation are presented and discussed.  相似文献   

3.
深入分析双层加筋结构有源隔声的物理机制有助于控制系统的优化设计。用模态叠加法和声振耦合理论对双层加筋有源隔声结构建模。在辐射加筋板声功率最小的控制条件下,从模态耦合的角度对有源隔声的物理本质进行了详细阐述。分析结果表明,由于双层加筋板中筋的耦合作用影响,系统的声能量传输规律及有源隔声机理与现有的模态分析结论相比均发生改变。结合筋的耦合影响,对空腔声场的模态抑制与重构机理进行修正和补充,清晰解释了双层加筋结构有源隔声的物理本质。  相似文献   

4.
Double-panel partitions are widely used for sound insulation purposes. Their insulation efficiency is, however, deteriorated at low frequencies due to the structural and acoustic resonances. To tackle this problem, this paper proposes the use of long T-shaped acoustic resonators in a double-panel partition embedded along the edges. In order to facilitate the design and assess the performance of the structure, a general vibro-acoustic model, characterizing the interaction between the panels, air cavity, and integrated acoustic resonators, is developed. The effectiveness of the technique as well as the optimal locations of the acoustic resonators is examined at various frequencies where the system exhibits different coupling characteristics. The measured optimal locations are also compared with the predicted ones to verify the developed theory. Finally, the performance of the acoustic resonators in broadband sound transmission control is demonstrated.  相似文献   

5.
为探讨加筋对双层结构低频隔声及有源控制的影响,分析了筋条数目及布放位置对双层加筋结构低频隔声性能、有源控制策略选取及有源隔声性能的影响。首先利用模态叠加与声-振耦合理论对双层加筋结构建模,然后采用数值算例对上述问题展开探讨。研究发现,筋条数目增多或筋条靠近基板的中间位置布放,将有利于双层加筋结构低频隔声性能的提高。对于有源控制措施,声控制策略与力控制策略相比,前者的控制效率较高且降噪效果较好。由于筋复杂的耦合影响,添加多条筋或筋条靠基板中间布置时有源控制效果减弱,需施加多个点源才能获得较好的降噪效果。  相似文献   

6.
For the sound insulation of a double-panel partition,the stud between two leaves creates a vibration transmission path,which can often be more critical and more important in the mid-frequency range than the airborne path through the cavity.Owing to the fact that partitions with light-weight steel studs are commonly used in building construction,studies on the sound insulation effect of such studs have been conducted.Especially,a model,initiated by Gu and Wang(1983),has been widely studied during the past decades.In the model,the steel stud is considered as an elastic spring with its cross-section stiffness in the sound insulation index prediction of such a partition.Experimental results of different stud profiles have been reported from different testing laboratories and more information has been gained to understand the stiffness effect of the stud on the sound insulation of the double-leaf partitions.In this paper,the authors have given this subject a thorough review and have concluded that a critical problem needs further investigation on the determination of the stiffness of the connecting elements in the double-leaf partitions.  相似文献   

7.
The sound transmission loss (STL) of finite lightweight multilayered structures with thin air layers is studied in this paper. Two types of models are used to describe the vibro-acoustic behavior of these structures. Standard transfer matrix method assumes infinite layers and represents the plane wave propagation in the layers. A wave based model describes the direct sound transmission through a rectangular structure placed between two reverberant rooms. Full vibro-acoustic coupling between rooms, plates, and air cavities is taken into account. Comparison with double glazing measurements shows that this effect of vibro-acoustic coupling is important in lightweight double walls. For infinite structures, structural damping has no significant influence on STL below the coincidence frequency. In this frequency region, the non-resonant transmission or so-called mass-law behavior dominates sound transmission. Modal simulations suggest a large influence of structural damping on STL. This is confirmed by experiments with double fiberboard partitions and sandwich structures. The results show that for thin air layers, the damping induced by friction and viscous effects at the air gap surfaces can largely influence and improve the sound transmission characteristics.  相似文献   

8.
电晕噪声不同于的传统的电气设备噪声,其发声位置高、频带宽、声源分散,是750 kV变电站噪声控制的薄弱环节.该文以西北某750 kV变电站为例,使用紫外成像仪定位了36处主要电晕噪声点,基于噪声实测和全站声场仿真分析,研究了电晕噪声对变电站声环境的影响.针对主要电晕点的实际情况,提出了具体的电晕噪声防治措施.治理措施在...  相似文献   

9.
This paper describes theoretical and experimental investigations into the sound absorption and transmission properties of micro-perforated panels (MPP) backed by an air cavity and a thin plate. A fully coupled modal approach is proposed to calculate the absorption coefficient and the transmission loss of finite-sized micro-perforated panels-cavity-panel (MPPCP) partitions with conservative boundary conditions. It is validated against infinite partition models and experimental data. A practical methodology is proposed using collocated pressure-velocity sensors to evaluate in an anechoic environment the transmission and absorption properties of conventional MPPCPs. Results show under which conditions edge scattering effects should be accounted for at low frequencies. Coupled mode analysis is also performed and analytical approximations are derived from the resonance frequencies and mode shapes of a flexible MPPCP. It is found that the Helmholtz-type resonance frequency is deduced from the one associated to the rigidly backed MPPCP absorber shifted up by the mass-air mass resonance of the flexible non-perforated double-panel. Moreover, it is shown analytically and experimentally that the absorption mechanisms at the resonances are governed by a large air-frame relative velocity over the MPP surface, with either in-phase or out-of-phase relationships, depending on the MPPCP parameters.  相似文献   

10.
A novel pendulum-type vibration isolation system is proposed consisting of three active cables with embedded piezoelectric actuators and a passive elastomer layer. The dynamic response of the isolation module in the vertical and horizontal directions is modeled using the Lagrangian approach. The validity of the dynamic model is confirmed by comparing the simulation results for the frequency response in the vertical and horizontal directions with the experimental results. An approximate model is proposed to take into account system uncertainties such as payload changes and hysteresis effects. A robust quantitative feedback theory (QFT)-based active controller is then designed to ensure that the active control can achieve a high level of disturbance rejection in the low-frequency range even under variable loading conditions. It is shown that the controller achieves average disturbance rejection of ?14 dB in the 2–60 Hz bandwidth range and ?35 dB at the resonance frequency. The experimental results confirm that the proposed system achieves a robust vibration isolation performance under the payload in the range of 40–60 kg.  相似文献   

11.
We numerically and experimentally present passive and active electromagnetically induced transparency-like metamaterials in a TEM waveguide under normal excitation. Asymmetry of the metamaterial unit cell leads to the splitting of the radiative resonance. Surface current distributions are analyzed to account for each resonance. Moreover, by implementing a varactor diode to one of the gaps of the double-split ring resonator, electromagnetically induced transmission-like band is shifted in frequency and the corresponding bandwidth is modulated. A modulation ratio of 29.5 dB in transmission is experimentally demonstrated by only increasing the bias voltage 4 volts.  相似文献   

12.
提出了一种计算上下面板非对称的三明治夹芯板隔声性能的方法。通过对非对称夹芯梁表观抗弯曲刚度的计算,得到对应夹芯板随频率变化的表观抗弯刚度,代入4阶的控制方程,应用模态展开法可以方便地计算简支非对称夹芯板的隔声量。对4种定制的3层非对称碳纤维夹芯板进行了理论计算和实验测试对比,在频率范围100~3150 Hz内,计权隔声量误差在3 dB以内。着重分析了面板对称性、芯层剪切模量对隔声性能的影响,发现在夹芯板面密度一定时,芯层剪切模量对夹芯板的隔声性能影响最为显著。当芯层剪切模量较小时,上下面板非对称分布导致吻合频率显著降低,对夹芯板的整体隔声亦不利。  相似文献   

13.
Theoretical and experimental work is presented to compare the effect of decentralised velocity feedback control on thin homogeneous and sandwich panels. The decentralised control system consists of five control units, which are composed of a proof-mass electrodynamic actuator with an accelerometer underneath its footprint and an analogue controller. The stability of the feedback loops is analysed by considering the sensor-actuator open-loop frequency response function of each control unit and the eigenvalues of the fully populated matrix of open-loop frequency response functions between the five sensors and five actuators. The control performance is then analysed in terms of the time-averaged total kinetic energy and total sound power radiated by the two panels. The results show that for a stiff sandwich panel higher stable feedback gains can be implemented than on a thin homogeneous panel of comparable weight per unit area. Moreover the implementation of decentralised velocity feedback can offset some of the undesirable sound transmission properties of lightweight sandwich structures by efficiently reducing structural vibration and sound power radiation in the mid audio frequency range.  相似文献   

14.
An analytical study on the vibro-acoustic behaviors of a double-panel structure with an acoustic cavity is presented. Unlike the existing studies, a structural–acoustic coupling model of an elastically restrained double-panel structure with an acoustic cavity having arbitrary impedance on sidewalls around the cavity is developed in which the two dimensional (2D) and three dimensional (3D) modified Fourier series are used to represent the displacement of the panels and the sound pressure inside the cavity, respectively. The unknown expansions coefficients are treated as the generalized coordinates and the Rayleigh–Ritz method is employed to determine displacement and sound pressure solutions based on the energy expressions for the coupled structural–acoustic system. The effectiveness and accuracy of the present model is validated by numerical example and comparison with finite element method (FEM) and existing analytical method, with good agreement achieved. The influence of key parameters on the vibro-acoustic behaviors and sound transmission of the double-panel structure is investigated, including: cavity thickness, boundary conditions, sidewall impedance, and the acoustic medium in the cavity.  相似文献   

15.
An extended reach 10 Gb/s wavelength division multiplexing passive optical networks (WDM-PONs) system based on reflective semiconductor optical amplifier (RSOA) is proposed by using power pre-emphasized orthogonal frequency division multiplexing (OFDM) signal. Experimental results show that the proposed technique can effectively enhance the system performance against the limited bandwidth and chirp induced fading effect from direct modulation of RSOA. The receiver sensitivity is improved by 5 dB at the limit of BER for forward error correction (FEC) code over the 60 km and 85 km fiber transmission without any dispersion compensation module.  相似文献   

16.
惠辉  王宏伟  荣畋 《应用声学》2022,41(6):998-1003
研制了一种嵌套式高频宽带复合材料换能器,利用1-3型压电复合材料Q值较低、频带较宽的特点,采用组合式的结构拓展换能器的工作带宽。通过切割框型压电陶瓷、灌注环氧树脂得到压电复合材料框型敏感元件,再将不同厚度的框型敏感元件沿轴向嵌套从而制成多层嵌套的压电复合材料敏感元件。建立1-3型压电复合材料中压电小柱的等效电路,根据等效电路计算出压电小柱的谐振频率,并与1-3型压电复合材料的谐振频率理论计算结果进行对比。通过ANSYS软件对敏感元件结构进行仿真,并根据仿真结果确定了敏感元件的最佳设计方案。最终制作出的换能器进行水下测试,该换能器的谐振频率为310 kHz,最大发送电压响应为188.5 dB,-3 d B带宽可达130 kHz,接收灵敏度最大可达-186.8 dB,-3 dB带宽可达90 kHz,谐振频率处-3 d B的指向性开角约为2.4°。该嵌套式敏感元件可实现换能器宽带发射与接收声波的目标。  相似文献   

17.
弹性联接对钢龙骨轻板隔墙隔声量的影响   总被引:3,自引:0,他引:3  
现有估计双层轻板隔墙隔声量的方法是从刚性声桥出发的,它对钢龙骨隔墙并不适用。后者由于龙骨本身具有侧向弹性作用而使中高频的隔声量有所提高。本文提出了估计钢龙骨轻板隔墙隔声量的表达式,并与实验结果符合良好。本文还对龙骨两侧附加弹性阻尼垫条对隔声改善作用进行了讨论。对这样一种构造较为复杂的隔墙现在也能用一组简单表达式来确切地预计其隔声量。  相似文献   

18.
In the square-wave PFM system for transmission of TV programmes through optical fibres, square-wave PFM pulses are generated at the transmitter with a relatively low centre frequency, whereas double-frequency equal-width narrow pulses are produced in the receiver before the demodulating low-pass filter, at both the rising and falling edges of the transmitted pulses. The use of the frequency-doubling technique in such a system results in narrow transmission bandwidth and high receiver sensitivity, thus prolonging the transmission distance significantly as compared with ordinary PFM. In the experiment, the system is operated at 1.3 m with multimode fibre having bandwidth 700 MHz km, a laser diode as optical source and a PIN/FET as detector. It can effectively transmit the high-quality broadcast TV programme with accompanying sound channel to a distance of 50.7 km. Experimental results are: receiver sensitivity –40 dB m, weighted SNR for video 59.3 dB, differential gain and differential phase less than 1% and 1°, respectively.  相似文献   

19.
This study deals with the feedforward active control of sound transmission through a simply supported rectangular panel using vibration actuators. The control effect largely depends on the excitation method, including the number and locations of actuators. In order to obtain a large control effect at low frequencies over a wide frequency, an active transmission control method based on single structural mode actuation is proposed. Then, with the goal of examining the feasibility of the proposed method, the (1, 3) mode is selected as the target mode and a modal actuation method in combination with six point force actuators is considered. Assuming that a single input single output feedforward control is used, sound transmission in the case minimizing the transmitted sound power is calculated for some actuation methods. Simulation results showed that the (1, 3) modal actuation is globally effective at reducing the sound transmission by more than 10?dB in the low-frequency range for both normal and oblique incidences. Finally, experimental results also showed that a large reduction could be achieved in the low-frequency range, which proves the validity and feasibility of the proposed method.  相似文献   

20.
In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model for sound transmission into a thin cylindrical shell is used to study sound transmission under “flight conditions”: i.e., under conditions of external air flow past a pressurized cylinder at flight altitude. Numerical results for different incidence angles are presented for a typical narrow-bodied jet in cruising flight at 10 660 m (35 000 ft) with interior pressure at 2440 m (8000 ft). A comparison is made between no-flow sound transmission at standard conditions on the ground to sound transmission under flight conditions. It is shown that at M = 0, the cylinder transmission loss has dips at fR (cylinder ring frequency) and fc (critical frequency for a flat panel of same material and thickness as shell). Below fR cylinder resonances affect TL. Between fR and fc, cylinder TL follows a masslaw behavior. Flow provides a modest increase in TL in the mass-law region, and strongly interacts with the cylinder resonances below fR. For normally-incident waves, TL is unaffected by flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号