首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is Part II in a series of three papers on the active minimization of harmonic enclosed sound fields. In Part I it was shown that in order to achieve appreciable reductions in the total time averaged acoustic potential energy, Ep, in an enclosed sound field of high modal density then the primary and secondary sources must be separated by less than one half wavelength, even when a relatively large number of secondary sources are used. In this report the same theoretical basis is used to investigate the application of active control to sound fields of low modal density. By the use of a computer model of a shallow rectangular enclosure it is demonstrated that whilst the reductions in Ep which can be achieved are still critically dependent on the source locations, the criteria governing the levels of reduction are somewhat different. In particular it is shown that for a lightly damped sound field of low modal density substantial reductions in Ep can be achieved by using a single secondary source placed greater than half a wavelength from the primary source, provided that the source is placed at a maximum of the primary sound field. The problems of applying this idealized form of active noise control are then discussed, and a more practical method is presented. This involves the sampling of the sound field at a number of discrete sensor locations, and then minimizing the sum of the squared pressures at these locations. Again by use of the computer model of a shallow rectangular enclosure, the effects of the number of sensors and of the locations of these sensors are investigated. It is demonstrated that when a single mode dominates the response near optimal reductions in Ep can be achieved by minimizing the pressure at a single sensor, provided the sensor is at a maximum of the primary sound field. When two or three modes dominate the response it is found that if only a limited number of sensors are available then minimizing the sum of the squared pressures in the corners of the enclosure gives the best reductions in Ep. The reasons for this behaviour are discussed.  相似文献   

2.
干灵锋  户文成  吴瑞  张斌 《应用声学》2018,37(2):220-225
针对现有几何声学的方法对封闭空间内声场进行预测时在中低频段出现较大误差的问题,该文提出一种近似圆锥声束追踪法和相干反射场理论相结合的声场预测新模型。在近似圆锥声束追踪法基础上,考虑声束轴线在边界多次反射时声压和相位的改变,最后计算不同声波之间的干涉效应,建立一种适用于任意形状封闭空间的声场预测相干模型。利用该模型对某一矩形封闭空间进行声场预测,通过对边界元法、Raynoise软件相干和非相干算法的预测结果和本模型的数值模拟结果对比。结果表明,文中提出的方法和边界元法的计算结果在中低频段非常吻合,两者的计算结果平均绝对误差为1.1 d B。本模型在中低频率下与同样考虑了相位的Raynoise相干算法相比有更好的准确性,在较高频率上,本模型计算结果与Raynoise相干算法计算结果非常吻合。  相似文献   

3.
The principle objective of this paper is to compare the measured results of active minimization experiments in an enclosed sound field with those predicted from theory. The enclosure used was essentially two dimensional over the frequency range of interest and was only lightly damped. A practical control system was built which minimized the sum of the squares of a number of microphone outputs by adjusting the outputs of a number of secondary loudspeakers at a single frequency. Various approaches to designing the algorithm which controls such a system are discussed, including matrix inversion, gradient descent methods, and pattern search methods. Although some problems with coupling between the acoustic and structural modes were initially encountered, the response of the experimental enclosure was very close to that predicted by the computer model when these problems were overcome. The pressure field inside the enclosure was measured at 200 points when excited both on resonance and off resonance, and the form of the pressure field was also found to be very similar to that predicted by the computer model. The conditions under which significant reductions in the total acoustic potential energy in the enclosure could be achieved by the action of a number of secondary sources were experimentally investigated. It was found that, in general, large reductions can be achieved only when the enclosure is excited on resonance. The secondary source does not have to be within half a wavelength of the primary to give good reductions, provided it is able to couple in to the most strongly excited modes.  相似文献   

4.
The analysis of continuous systems with piecewise-linear constraints in their domains have previously been limited to either numerical approaches, or analytical methods that are constrained in the parameter space, boundary conditions, or order of the system. The present analysis develops a robust method for studying continuous systems with arbitrary boundary conditions and discrete piecewise-linear constraints. A superposition method is used to generate homogeneous boundary conditions, and modal analysis is used to find the displacement of the system in each state of the piecewise-linear constraint. In order to develop a mapping across each slope discontinuity in the piecewise-linear force-deflection profile, a variational calculus approach is taken that minimizes the L2 energy norm between the previous and current states. An approach for calculating the finite-time Lyapunov exponents is presented in order to determine chaotic regimes. To illustrate this method, two examples are presented: a pinned-pinned beam with a deadband constraint, and a leaf spring coupled with a connector pin immersed in a viscous fluid. The pinned-pinned beam example illustrates the method for a non-operator based analysis. Results are used to show that the present method does not necessitate the need of a large number of basis functions to adequately map the displacement and velocity of the system across states. In the second example, the leaf spring is modeled as a clamped-free beam. The interaction between the beam and the connector pin is modeled with a preload and a penalty stiffness. Several experiments are conducted in order to validate aspects of the leaf spring model. From the results of the convergence and parameter studies, a high correlation between the finite-time Lyapunov exponents and the contact time per period of the excitation is observed. The parameter studies also indicate that when the system's parameters are changed in order to reduce the magnitude of the impact velocity between the leaf spring and the connector pin, the extent of the regions over which a chaotic response is observed increases.  相似文献   

5.
6.
Highly advanced computer models for the prediction of sound fields in rooms are now available. However, these tools are complex and require a skilled acoustician to use effectively and hence there is a need for more simpler models. A simple model needs to be accurate and quick to use, but most importantly should require a minimum amount of input data to construct the model. This is only achievable if the scope of the model is reduced to one or two acoustic parameters. Three simple models were investigated two empirical based formulae and a geometric acoustic model. The models were validated in six configurations of an experimental room simulating a textile workshop and two real engineering workrooms. It was found that all the models executed near instantaneously, but the obtainable prediction accuracy and consistency was proportional to the amount of input data. The models are now available on the Web, running directly inside Netscape or Internet Explorer.  相似文献   

7.
田静 《声学学报》1996,21(S1):573-579
将简正方式有源控制的概念引入房间声场的控制,除了需要从理论上解决空间声场的有效采集与重建问题以外,更重要的还要从实验上解决控制系统的稳定性与可控性。本文对房间声场的简正方式有源控制进行了概念性的理论分析,从逐步补偿反馈控制系统的潜在不稳定极点入手,得到了比较系统的实验结果,很好地说明和解决了简正方式有源控制系统的一些本质问题。  相似文献   

8.
I.IntroductionInlate198()'s,thestudiesonactivenoisecontrolhavebeengraduallyturnedfromtheductsandopenspacestothemorepracticaIenclosedsoundfields.SomespeciaIworkinaccordancewiththeactiveattenuationofcabinnoisehasstartedwiththeoreticalmechanisms,systemdesignandtransducerdevelopmellt.Intensivereflectionsandtheformedstandingwavedistributioni11al1enclosedsoundfieldarealwaysthemaindifficultiesforactivenoisecontrolinthesecases.Ontheotherhand,normalmoderesponseofthefieldalsoimplementsanewmethod,theap…  相似文献   

9.
The phased beam tracing method (PBTM) was suggested as a medium-frequency simulation technique for the calculation of impulse response, although main assumptions of geometric acoustics still hold. The phased method needs the reflection coefficient for characterizing the acoustic property of a surface and the complex wave number for describing the propagation characteristics. In this study, two types of approximate real reflection coefficients derived from the measured absorption coefficient were tested for a practical applicability. As a test example, pressure impulse responses and energy impulse responses computed from the PBTM were compared with those from the measurement and the ordinary beam tracing method. The PBTM employing the approximate reflection coefficients greatly increased the accuracy of the prediction compared to the ordinary beam tracing method, in particular at the medium-frequency range in octave bands above the Schroeder cutoff frequency. A comparison was made between angle-dependent and angle-independent reflection coefficients in the calculation of acoustic measures. Although the angle-dependent reflection coefficient yielded best matched results with measured data, but the simple angle-independent reflection coefficient can be also used with a reasonably good precision.  相似文献   

10.
The assembly of structures along continuous boundaries presents great difficulty in the context of modal synthesis. In order to solve such problems, a method is proposed in which a hybrid model is defined reflecting the dynamic behavior of a structure loaded along a boundary. It is based on Weinstein's method and corresponds to a generalization of the impedance matrix method. Generalized boundary co-ordinates are defined from branch modes obtained by introducing mass loading along the boundary. Thus, the hybrid model can be derived from testing as a result of two independent modal identifications. The method permits high precision prediction of the influence of strong structural modifications. Thus, in the case of rectangular plates, it has been possible to find the modes of a cantilever plate and of a plate with stiffeners from the free modes.  相似文献   

11.
A complete method for efficient fuzzy modal analysis   总被引:1,自引:0,他引:1  
The objective of this paper is to determine both the fuzzy eigenvalues and eigenvectors of a finite element model defined with fuzzy parameters. The proposed method introduces the concepts of mode shape pairing and the functional dependence of eigensolutions with respect to design parameters. High-order approximations are then introduced to limit the computational cost associated with variability management. Numerical test cases are used to highlight the abilities of this method to predict behaviour modifications due to variations in the physical parameters.  相似文献   

12.
Previous investigations have used Hankel transforms to establish the velocity potentials of the wave fields resulting from arbitrary angle plane wave impingement on a circular orifice in a rigid, thick wall. The scattered field from the orifice is examined, in particular the modal contributions to the amplitude of its velocity potential. For each m,n mode the amplitude is dependent upon the amplitude of the in-orifice waves and a driving term unique to each m,n mode. In establishing the amplitudes of the in-orifice waves, the effects of modal coupling are also considered. In this work these two components of the scattered wave amplitude are investigated on a modal basis and approximations given for coupling effects. These approximations are then used to calculate the scattered field and the results compared with conventional solutions that use full modal coupling.  相似文献   

13.
A modal test method that uses sound pressure transducers at fixed locations and an impact hammer roving over a test structure is developed in this work. Since sound pressure transducers are used, the current method deals with a coupled structural–acoustic system. Based on the vibro-acoustic reciprocity, the method is equivalent to one, where acoustic excitations at fixed locations are given and the resulting acceleration of the test structure is measured. The current method can eliminate mass loading due to use of accelerometers, which can destroy existence of repeated or close natural frequencies of a symmetric structure. It can also avoid effects of a nodal line of a mode and an inactive area of a local mode, and measure all the out-of-plane modes within a frequency range of interest, including global and local ones. The coupling between the structure and the acoustic field in a structural–acoustic system introduces asymmetry in the model formulation. An equivalent state space formulation is used for a damped structural–acoustic system and the associated eigenvalue problem is derived. The biorthonormality relations between the left and right eigenvectors and the relations between the structural and acoustic components in the left and right eigenvectors are proved. The frequency response functions associated with the current method are derived and their physical meanings are explained. The guidelines for using the current method, including the types of structures that are suitable for the method, the positions of the sound pressure transducers, and the orientation of the test structure relative to the transducers, are provided. Modal tests were carried out on an automotive disk brake using the traditional and current methods, where multiple accelerometers and microphones were used to measure its dynamic responses induced by impacts, respectively. The differences between the measured natural frequencies using the current method and those from the finite element model of the disk brake are less than 3 percent for the first 18 elastic modes, and the modal assurance criterion values of the associated mode shapes are all above 90 percent. The current method was also used to measure the natural frequencies, damping ratios, and mode shapes of a light circuit board.  相似文献   

14.
This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.  相似文献   

15.
基于时间反转的复杂声场拾声传声器阵列性能研究   总被引:1,自引:0,他引:1  
蔡野锋  邱小军  杨军 《声学学报》2010,35(6):593-600
探讨时间反转技术在复杂声场传声器阵列拾声中应用的可行性及其机理,给出其一般规律和性能。研究表明:在自由空间中,其拾声性能与频率,阵列形状和半径有关,频率越高,半径越大,拾声效果越好。在普通房间中,在语音频段内,圆弧阵列在预定目标点处的阵列增益性能要比离预定目标点约25 cm远处的位置处大5 dB以上。在普通房间和混响室中的实验验证了上述结论。  相似文献   

16.
肖悦  陈剑  胡定玉  蒋丰鑫 《声学学报》2014,39(4):489-500
针对由复杂结构振动形成的封闭空间声场,提出了一种基于等效源法的面板声学贡献度分析方法。该方法首先利用基于等效源法的内部声全息技术,重构出振动结构表面的法向振速并实现对整个内部封闭声场的预测。再将振动结构的每个面板在腔体内部场点产生的声压分别用位于空腔表面附近的等效源在该点产生的辐射声压代替,将复杂的封闭非自由声场问题转化为简单的内部自由场问题,结合重建出的结构表面法向振速进而识别出封闭振动结构各面板对腔体内任意位置的声学贡献度。通过对复杂结构内声场的数值仿真和验证实验,分析了等效源的数量及与重建面距离等参数对重建精度的影响,结果表明所提方法不仅能够达到传统数值分析方法的计算精度,而且具有更简单的求解过程。  相似文献   

17.
For the interior sound field formed by the complex vibrating structure,an identification approach of panel acoustic contribution based on equivalent source method(ESM)was presented.The normal velocity on the surface of vibrating structure was first reconstructed by using interior nearfield acoustic holography based on ESM and the prediction of whole interior enclosed sound field was realized.Then the sound pressure produced by each panel at the interested field point was respectively replaced by the radiated pressure of the enclosed interior sound field which is formed by the equivalent virtual sources located near the surface of the cavity.Combining with the reconstructed normal surface velocity,the acoustic contribution of each panel to any position in the cavity was obtained by transforming the complex enclosed non-free field into the simple interior free field.Numerical simulations and experiments are conducted,and the influences of the number of the equivalent sources and the distance between them and the reconstructed surface have been investigated.The results show that the proposed method is easier to be implemented with the same accuracy than the traditional analysis method.  相似文献   

18.
Acoustic characteristics of pulse detonation engine(PDE) sound propagating in enclosed space are numerically and experimentally investigated. The finite element software LS-DYNA is utilized to numerically simulate the PDE sound propagating in enclosed space. Acoustic measurement systems are established for testing the PDE sound in enclosed space,and the time-frequency characteristics of PDE sound in enclosed space are reported in detail. The experimental results show that the sound waveform of PDE sound in enclosed space are quite different from those in open space, and the reflection and superposition of PDE sound on the walls of enclosed space results in the sound pressure oscillating obviously. It is found that the peak sound pressure level(PSPL) and overall sound pressure level(OASPL) of PDE sound in enclosed space are higher than those in open space and their difference increases with the rise of propagation distance. The results of the duration of PDE sound indicate that the A duration of PDE sound in enclosed space is higher than that in open space except at measuring points located at 2-m and 5-m while the B duration is higher at each of all measuring points. Results show that the enclosed space has a great influence on the acoustic characteristic of PDE sound. This research is helpful in performing PDE experiments in enclosed laboratories to prevent the PDE sound from affecting the safety of laboratory environment,equipment, and staffs.  相似文献   

19.
Both from experimental and theoretical observations it is known that the sound fields in normal empty reverberation rooms are not sufficiently diffuse at low frequencies. In order to increase the degree of diffusion, additional elements (e.g., hanging panels) are usually brought into the standard measurement procedures. Several methods for evaluating the degree of diffusion have been proposed. However, most of the associated measures of diffusion have not been any great success.In this article a new test method based on a new way of measuring diffusion is proposed. This measure is basically an estimate of the cross-correlation coefficient for the sound pressures measured with two microphones a distance r apart from each other. The specific quantity is presented, and its basic properties are investigated in some normal situations. The results obtained are compared with existing sound field theories. These comparisons indicate that the measure behaves logically and is sensitive enough.Only 13-octave band filtering is considered in this article. However, with some slight modifications the procedure can be designed for investigations concerning other source filters.  相似文献   

20.
The paper discusses the sound absorptive performance of a porous material with meso-perforations inserted in a rectangular waveguide using a numerical hybrid adaptive finite element-modal method. Two specific applications are investigated: (i) the improvement of porous materials noise reduction coefficient using meso-perforations (ii) the effects of lateral air gaps on the normal incidence sound absorption of mono-layer and two-layer porous materials. For the first application, a numerical design of experiments is used to optimize the sound performance of a porous material with meso-perforations with a reduced number of numerical simulation. An example in which the optimization process is carried out on the thickness and size of the perforation is presented to illustrate the relevance of the approach. For the second application, a set of twenty fibrous materials spanning a large flow resistivity range is used. Practical charts are proposed to evaluate the influence of air gaps on the average sound absorption performance of porous materials. This is helpful to both the experimenter regarding characterization of porous material based on Standing Wave Tube measurements and for the engineer to quantifying the impact of air gaps and for designing efficient absorbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号