首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acoustic comparison of soprano solo and choir singing   总被引:3,自引:0,他引:3  
Five soprano singers were recorded while singing similar texts in both choir and solo modes of performance. A comparison of long-term-average spectra of similar passages in both modes indicates that subjects used different tactics to achieve somewhat higher concentrations of energy in the 2- to 4-kHz range when singing in the solo mode. It is likely that this effect resulted, at least in part, from a slight change of the voice source from choir to solo singing. The subjects used slightly more vibrato when singing in the solo mode.  相似文献   

2.
3.
Previous research on the special characteristics of the professional singing voice has at least partially explained how singers can commonly use much higher lung pressures than nonsingers without vocal damage or excessive air flow during the voiced sounds. In this study, the control of air flow during the unvoiced consonants is examined for an operatic-style soprano. It was found that this singer could maintain a low average air flow during the consonants even though the lung pressure reached values over five times those used during normal conversational speech. The air flow was kept low primarily by the use of a number of mechanisms involving rapid, accurate, coordinated valving of the air flow at the point of articulation and at the glottis.  相似文献   

4.
Real-time functional magnetic resonance imaging: methods and applications   总被引:3,自引:0,他引:3  
Functional magnetic resonance imaging (fMRI) has been limited by time-consuming data analysis and a low signal-to-noise ratio, impeding online analysis. Recent advances in acquisition techniques, computational power and algorithms increased the sensitivity and speed of fMRI significantly, making real-time analysis and display of fMRI data feasible. So far, most reports have focused on the technical aspects of real-time fMRI (rtfMRI). Here, we provide an overview of the different major areas of applications that became possible with rtfMRI: online analysis of single-subject data provides immediate quality assurance and functional localizers guiding the main fMRI experiment or surgical interventions. In teaching, rtfMRI naturally combines all essential parts of a neuroimaging experiment, such as experimental design, data acquisition and analysis, while adding a high level of interactivity. Thus, the learning of essential knowledge required to conduct functional imaging experiments is facilitated. rtfMRI allows for brain-computer interfaces (BCI) with a high spatial and temporal resolution and whole-brain coverage. Recent studies have shown that such BCI can be used to provide online feedback of the blood-oxygen-level-dependent signal and to learn the self-regulation of local brain activity. Preliminary evidence suggests that this local self-regulation can be used as a new paradigm in cognitive neuroscience to study brain plasticity and the functional relevance of brain areas, even being potentially applicable for psychophysiological treatment.  相似文献   

5.
It is sometimes claimed that some singers tune their two lowest formant frequencies to harmonic partials in order to increase the audibility of the voice. Voice acoustics predicts that such tuning of formants should cause vowel quality to change. Using a newly constructed digital singing machine, the authors have explored the perceptual consequences of such tuning. Four different cases were represented, in which the two lowest formant frequencies were either constant or adapted to the fundamental frequency according to either of three different strategies. The resulting voice timbres were judged by an expert panel of singing teachers in a listening test consisting of descending chromatic scales. Constant formant frequencies were clearly preferred, presumably because formant tuning entails formant frequency shifts between adjacent tones so substantial that salient vowel quality shifts occur.  相似文献   

6.
In pharmacological magnetic resonance imaging (phMRI) with anesthetized animals, there is usually only a single time window to observe the dynamic signal change to an acute drug administration since subsequent drug injections are likely to result in altered response properties (e.g., tolerance). Unlike the block-design experiments in which fMRI signal can be elicited with multiple repetitions of a task, these single-event experiments require stable baseline in order to reliably identify drug-induced signal changes. Such factors as subject motion, scanner instability and/or alterations in physiological conditions of the anesthetized animal could confound the baseline signal. The unique feature of such functional MRI (fMRI) studies necessitates a technique that is able to monitor MRI signal in a real-time fashion and to interactively control certain experimental procedures. In the present study, an approach for real-time MRI on a Bruker scanner is presented. The custom software runs on the console computer in parallel with the scanner imaging software, and no additional hardware is required. The utility of this technique is demonstrated in manganese-enhanced MRI (MEMRI) with acute cocaine challenge, in which temporary disruption of the blood-brain barrier (BBB) is a critical step for MEMRI experiments. With the aid of real-time MRI, we were able to assess the outcome of BBB disruption following bolus injection of hyperosmolar mannitol in a near real-time fashion prior to drug administration, improving experimental success rate. It is also shown that this technique can be applied to monitor baseline physiological conditions in conventional fMRI experiments using blood oxygenation level-dependent (BOLD) contrast, further demonstrating the versatility of this technique.  相似文献   

7.
8.
Access to Magnetic Resonance Imaging (MRI) across developing countries ranges from being prohibitive to scarcely available. For example, eleven countries in Africa have no scanners. One critical limitation is the absence of skilled manpower required for MRI usage. Some of these challenges can be mitigated using autonomous MRI (AMRI) operation. In this work, we demonstrate AMRI to simplify MRI workflow by separating the required intelligence and user interaction from the acquisition hardware. AMRI consists of three components: user node, cloud and scanner. The user node voice interacts with the user and presents the image reconstructions at the end of the AMRI exam. The cloud generates pulse sequences and performs image reconstructions while the scanner acquires the raw data. An AMRI exam is a custom brain screen protocol comprising of one T1-, T2- and T2*-weighted exams. A neural network is trained to incorporate Intelligent Slice Planning (ISP) at the start of the AMRI exam. A Look Up Table was designed to perform intelligent protocolling by optimizing for contrast value while satisfying signal to noise ratio and acquisition time constraints. Data were acquired from four healthy volunteers for three experiments with different acquisition time constraints to demonstrate standard and self-administered AMRI. The source code is available online. AMRI achieved an average SNR of 22.86 ± 0.89 dB across all experiments with similar contrast. Experiment #3 (33.66% shorter table time than experiment #1) yielded a SNR of 21.84 ± 6.36 dB compared to 23.48 ± 7.95 dB for experiment #1. AMRI can potentially enable multiple scenarios to facilitate rapid prototyping and research and streamline radiological workflow. We believe we have demonstrated the first Autonomous MRI of the brain.  相似文献   

9.
Ultrafast magnetic resonance imaging has been applied for the first time to measure simultaneously both the rise velocities and coalescence of bubbles, and the dynamics of the solid phase in a gas-solid two-phase flow. Here, we consider the hydrodynamics within a gas-fluidized bed of particles of diameter 0.5 mm contained within a column of internal diameter 50 mm; gas velocities in the range of 0.18-0.54 m/s were studied. The data are of sufficient temporal and spatial resolution that bubble size and the evolution of bubble size and velocity following coalescence events are determined.  相似文献   

10.
This work presents a statistical study of vibrato parameters in soprano voices. More than one hundred recordings of the same tone sung by 75 artists have been analyzed. Vibrato rate and extent, tone length and intonation, together with their correlations are the main parameters under examination. The study shows a clear decrease of the mean vibrato rate during the last century (-1.8±0.3 Hz/century), together with an increase of vibrato extent (56.4±0.3cent/century). Vibrato rate and extent show a statistically significant negative correlation (r=-0.62). Vibrato rate increase near the end of the tone has been observed too, in agreement with previous measurements, together with a mean increase of the pitch of the tone. A small positive correlation has been also found among note duration and vibrato extent.  相似文献   

11.
Voiced sounds were simulated with a computer model of the vocal fold composed of a single mass vibrating both parallel and perpendicular to the airflow. Similarities with the two-mass model are found in the amplitudes of the glottal area and the glottal volume flow velocity, the variation in the volume flow waveform with the vocal tract shape, and the dependence of the oscillation amplitude upon the average opening area of the glottis, among other similar features. A few dissimilarities are also found in the more symmetric glottal and volume flow waveforms in the rising and falling phases. The major improvement of the present model over the two-mass model is that it yields a smooth transition between oscillations with an inductive load and a capacitive load of the vocal tract with no sudden jumps in the vibration frequency. Self-excitation is possible both below and above the first formant frequency of the vocal tract. By taking advantage of the wider continuous frequency range, the two-dimensional model can successfully be applied to the sound synthesis of a high-pitched soprano singing, where the fundamental frequency sometimes exceeds the first formant frequency.  相似文献   

12.
磁共振成象新进展   总被引:2,自引:0,他引:2  
叶朝辉 《物理》2004,33(1):12-17
磁共振成象(MRI)已经成为生命科学研究和医疗诊断的有力手段,因此荣获2003年诺贝尔生理学或医学奖.文章概述了磁共振成象的新近进展,包括医疗成象、脑功能成象、显微成象、活体磁共振波谱等方面.  相似文献   

13.
14.
《Comptes Rendus Physique》2010,11(2):136-148
Magnetic resonance imaging (MRI) and fast field-cycling (FFC) NMR are both well-developed methods. The combination of these techniques, namely fast field-cycling magnetic resonance imaging (FFC-MRI) is much less well-known. Nevertheless, FFC-MRI has a number of significant applications and advantages over conventional techniques, and is being pursued in a number of laboratories. This article reviews the progress in FFC-MRI over the last two decades, particularly in the areas of Earth's field and pre-polarised MRI, as well as free radical imaging using field-cycling Overhauser MRI. Different approaches to magnet design for FFC-MRI are also described. The paper then goes on to discuss recent techniques and applications of FFC-MRI, including protein measurement via quadrupolar cross-relaxation, contrast agent studies, localised relaxometry and FFC-MRI with magnetisation-transfer contrast.  相似文献   

15.
Electric current-induced phase alternations have been imaged by fast magnetic resonance image (MRI) technology. We measured the magnetic resonance phase images induced by pulsed current stimulation from a phantom and detected its sensitivity. The pulsed current-induced phase image demonstrated the feasibility to detect phase changes of the proton magnetic resonance signal that could mimic neuronal firing. At the present experimental setting, a magnetic field strength change of 1.7 +/- 0.3 nT can be detected. We also calculated the averaged value of the magnetic flux density BT parallel to B0 produced by electric current I inside the voxel as a function of the wire position. The results of the calculation were consistent with our observation that for the same experimental setting the current-induced phase change could vary with location of the wire inside the voxel. We discuss our findings in terms of possible direct MRI detection of neuronal activity.  相似文献   

16.
17.
Stray field imaging has been extensively utilized in the last 10 years to perform very high resolution imaging of samples in a single dimension using the massive field gradient present in the fringe of a superconducting magnet. By spinning the sample around the magic-angle, the stray field gradient is successively reoriented along three orthogonal directions in the sample reference frame, allowing the acquisition of a full three-dimensional Fourier image, thereby providing the possibility to perform multi-dimensional very high-resolution imaging with standard nuclear magnetic resonance spectroscopy equipment. Here, we show multi-dimensional images demonstrating the feasibility of this technique.  相似文献   

18.
We demonstrate one-dimensional nuclear magnetic resonance imaging of the semiconductor GaAs with 170 nm slice separation and resolve two regions of reduced nuclear spin polarization density separated by only 500 nm. This was achieved by force detection of the magnetic resonance, magnetic resonance force microscopy (MRFM), in combination with optical pumping to increase the nuclear spin polarization. Optical pumping of the GaAs created spin polarization up to 12 times larger than the thermal nuclear spin polarization at 5K and 4T. The experiment was sensitive to sample volumes of 50 microm(3) containing approximately 4 x 10(11)71 Ga/Hz. These results demonstrate the ability of force-detected magnetic resonance to apply magnetic resonance imaging to semiconductor devices and other nanostructures.  相似文献   

19.
20.
核磁共振成像系列实验教学探讨   总被引:3,自引:1,他引:3  
蒋莹莹  张洁天  吕斯骅 《物理实验》2007,27(1):20-23,33
超小型核磁共振成像仪已经应用在近代物理实验教学中,该仪器可以研究各种样品的脉冲核磁共振.本文从教学内容和教学方法上对核磁共振成像实验进行了探讨·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号