首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prepared reversible micelles with dye loaded on the shells or cores by ion exchange. A poly(4-styrylmethyl triphenylphosphonium chloride)-block-polystyrene diblock copolymer prepared from poly(4-vinylbenzylchloride)-block-polystyrene and triphenylphosphine was reacted with methyl orange in a mixed solvent of benzene and acetonitrile to produce poly[4-styrylmethyl triphenylphosphonium 4-(4-dimethylamino)phenylazobenzenesulfonate]-block-polystyrene. The loading of the methyl orange on the micellar shells or cores was dependent on the composition of the mixed solvents. Dynamic light scattering demonstrated that the loading of the dye on the cores significantly expanded the micelles when compared to that on the shells. The loading of the dye on the cores shifted the UV wavelength of the methyl orange, whereas that on the shells produced no changes in the UV wavelength. Transmission electron microscopy confirmed the formation of the spherical micelles.  相似文献   

2.
Block copolymer inverse micelles from polystyrene-block-poly-2-vinylpyridine (PS-b-P2VP) deposited as monolayer films onto surfaces show responsive behavior and are reversibly switchable between two states of different topography and surface chemistry. The as-coated films are in the form of arrays of nanoscale bumps, which can be transformed into arrays of nanoscale holes by switching through exposure to methanol. The use of these micellar films to act as switchable etch masks for the structuring of the underlying material to form either pillars or holes depending on the switching state is demonstrated.  相似文献   

3.
Polystyrene-block-poly(methacrylic acid) and poly(methacrylic acid)-block-polystyrene-block-poly(methacrylic acid) di- and triblock copolymers form micelles with polystyrene cores and poly(methacrylic acid) shells when dissolved in water/1, 4-dioxane mixtures, rich in dioxane. These micelles can be transferred into water rich mixtures, into water, and into aqueous buffers by stepwise dialysis. Quasielastic light scattering and sedimentation velocity experiments show that in dioxane rich mixtures exists a dynamic micellization equilibrium, while in dioxane poor solutions and in aqueous buffers the equilibrium is frozen. The process of mixed micelles formation was observed in dioxane rich solutions.  相似文献   

4.
This research provides an efficient method for the fabrication of hybrid micelles with enzyme molecules at the interfaces. Amphiphilic block copolymer is synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization, and thiol‐modified porcine pancreatic lipase (PPL‐SH) is obtained by treatment of native PPL with Traut's reagent. PPL‐SH is conjugated to the block copolymer chains by thiol‐disulfide exchange reaction. In phosphate buffered saline, the bioconjugate self‐assembles into micelles with enzyme molecules at the interfaces between hydrophobic cores and hydrophilic coronae. The bioactivity of the enzyme molecules on the micelles are compared with the native enzyme. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2047–2052  相似文献   

5.
With light scattering titrations, we show that complex coacervate core micelles (C3Ms) form from a diblock copolymer with a polyelectrolyte block and either an oppositely charged polyelectrolyte, a diblock copolymer with an oppositely charged polyelectrolyte or a mixture of the two. The effect of added salt and pH on both types of C3Ms is investigated. The hydrodynamic radius of mixed C3Ms can be controlled by varying the percentage of oppositely charged polyelectrolyte or diblock copolymer. A simple core-shell model is used to interpret the results from light scattering, giving the same trends as the experiments for both the hydrodynamic radii and the relative scattering intensities. Temperature has only a small effect on the C3Ms. Isothermal titration calorimetry shows that the complexation is mainly driven by Coulombic attraction and by the entropy gain due to counterion release.  相似文献   

6.
Star-shaped poly(ε-caprolactone)-b-poly(ethylene oxide) amphiphilic copolymer with a tetrakis-(4-aminophenyl)-terminated porphyrin core was synthesized. Paclitaxel (PTX)-loaded polymeric micelles were prepared by the self-assembly of the star copolymer and in situ encapsulation of PTX. The fluorescent characteristic of the porphyrin moiety allowed the cellular uptake and biodistribution of the PTX-loaded micelles to be monitored by fluorescent imaging. The PTX-loaded micelles can be readily internalized by cancer cells and have a slightly higher cytotoxicity than clinic PTX injection Taxol. In vivo real-time fluorescent imaging revealed that the micelles could accumulate at tumor site via the blood circulation in tumor-bearing mice. In vivo antitumor efficacy examinations indicated that the PTX-loaded micelles had significantly superior efficacy in impeding tumor growth than Taxol and low toxicity to the living mice.  相似文献   

7.
8.
New micelle‐like organic supports for single site catalysts based on the self‐assembly of polystyrene‐b‐poly(4‐vinylbenzoic acid) block copolymers have been designed. These block copolymers were synthesized by sequential atom transfer radical polymerization (ATRP) of styrene and methyl 4‐vinylbenzoate, followed by hydrolysis. As evidenced by dynamic light scattering, self‐assembly in toluene that is a selective solvent of polystyrene, induced the formation of micelle‐like nanoparticles composed of a poly(4‐vinylbenzoic acid) core and a polystyrene corona. Further addition of trimethylaluminium (TMA) afforded in situ MAO‐like species by diffusion of TMA into the core of the micelles and its subsequent reaction with the benzoic acid groups. Such reactive micelles then served as nanoreactors, MAO‐like species being efficient activators of 2,6‐bis[1‐{(2,6‐diisopropylphenyl)imino}ethyl]pyridinyl iron toward ethylene polymerization. These new micelle‐like organic supports enabled the production of polyethylene beads with a spherical morphology and a high bulk density through homogeneous‐like catalysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 197–209, 2009  相似文献   

9.
Cylindrical block copolymer micelles with a crystalline poly(ferrocenyldimethylsilane) (PFDMS) core and a long corona-forming block are known to elongate through an epitaxial growth mechanism on addition of further PFDMS block copolymer unimers. We now report that addition of the semicrystalline homopolymer PFDMS(28) to monodisperse short (ca. 200 nm), cylindrical seed micelles of PFDMS block copolymers results in the formation of aggregated structures by end-to-end coupling to form micelle networks. The resulting aggregates were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). In some cases, a core-thickening effect was also observed where the added homopolymer appeared to deposit and crystallize at the core-corona interface, which resulted in an increase of the width of the micelles within the networks. No evidence for aggregation was detected when the amorphous homopolymer poly(ferrocenylethylmethylsilane) (PFEMS(25)) was added to the cylindrical seed micelles whereas similar behavior to PFDMS(28) was noted for semicrystalline polyferrocenyldimethylgermane (PFDMG(30)). This suggested that the crystallinity of the added homopolymer is critical for subsequent end-to-end coupling and network formation to occur. We also explored the tendency of the cylindrical seed micelles to form aggregates by the addition of PI-b-PFDMS (PI = polyisoprene) block copolymers (block ratios 6:1, 3.8:1, 2:1, or 1:1), and striking differences were noted. The results ranged from typical micelle elongation, as reported in previous work, at high corona to core-forming block ratios (PI-b-PFDMS; 6:1) to predominantly end-to-end coupling at lower ratios (PI-b-PFDMS; 2:1, 1:1) to form long, essentially linear structures. The latter process, especially for the 2:1 block copolymer, led to much more controlled aggregate formation compared with that observed on addition of homopolymers.  相似文献   

10.
Antiepidermal growth factor receptor antibody (anti‐EGFR antibody) was conjugated with the block copolymer micelle based on poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) for active targeting to EGFR overexpressing cancer cells. Doxorubicin (DOX) was encapsulated in the core of the block copolymer (MePEG‐b‐PCL) micelle (DOX‐micelle). The mean diameters of the DOX‐micelle and the anti‐EGFR‐PEG‐b‐PCL copolymer micelles loaded with DOX (DOX‐anti‐EGFR‐micelle) were about 25 and 31 nm, respectively. The RKO human colorectal cancer cells expressing moderate degree of EGFR were incubated with free DOX, DOX‐micelle, or DOX‐anti‐EGFR‐micelle to study the distribution of DOX in the cells. When cells were incubated with free DOX, moderate degree of DOX fluorescence was observed in the nuclei. In the cells treated with DOX‐micelle, the DOX fluorescence intensity in the cytoplasm was much greater than that in the nuclei. On the other hand, the nuclei of the cells treated with DOX‐anti‐EGFR‐micelle exhibited DOX fluorescence intensity similar to that in the cytoplasm. The cytotoxicity of DOX‐anti‐EGFR‐micelle to induce apoptosis in RKO cells was significantly greater than that of free DOX or DOX‐micelle. These results demonstrated that the presence of anti‐EGFR antibody on the DOX‐micelle surface (DOX‐anti‐EGFR‐micelle) increased the internalization of the DOX‐micelle and nuclear accumulation of DOX, and enhanced the DOX‐induced cell death. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7321–7331, 2008  相似文献   

11.
12.
This paper describes the preparation, characterization, and enzymatic activity of complex coacervate core micelles (C3Ms) composed of poly(acrylic acid) (PAA) and poly(N-methyl-2-vinyl pyridinium iodide)-b-poly(ethylene oxide) (PQ2VP-PEO) to which the antibacterial enzyme lysozyme is end-attached. C3Ms were prepared by polyelectrolyte complex formation between PAA and mixtures containing different ratios of aldehyde and hydroxyl end-functionalized PQ2VP-PEO. This resulted in the formation of C3Ms containing 0-40% (w/w) of the aldehyde end-functionalized PQ2VP-PEO block copolymer (PQ2VP-PEO-CHO). Chemical conjugation of lysozyme was achieved via reductive amination of the aldehyde groups, which are exposed at the surface of the C3M, with the amine groups present in the side chains of the lysine residues of the protein. Dynamic and static light scattering indicated that the conjugation of lysozyme to C3Ms prepared using 10 and 20% (w/w) PQ2VP-PEO-CHO resulted in the formation of unimicellar particles. Multimicellar aggregates, in contrast, were obtained when lysozyme was conjugated to C3Ms prepared using 30 or 40% (w/w) PQ2VP-PEO-CHO. The enzymatic activity of the unimicellar lysozyme-C3M conjugates toward the hydrolysis of the bacterial substrate Micrococcus lysodeikticus was comparable to that of free lysozyme. For the multimicellar particles, in contrast, significantly reduced enzymatic rates of hydrolysis, altered circular dichroism, and red-shifted tryptophan fluorescence spectra were measured. These results are attributed to the occlusion of lysozyme in the interior of the multimicellar conjugates.  相似文献   

13.
嵌段共聚物核交联胶束的制备与载药性能研究   总被引:1,自引:0,他引:1  
在DMAP的催化和DIPC的作用下,丙烯酸的双键被引入聚乙二醇-聚己内酯嵌段共聚物的疏水链段上,制备胶束过程中使用过硫酸铵催化位于胶束内核部分的双键交联,得到的核交联胶束。在包载甲氨喋呤释放过程中,核交联胶束的累积释放率明显比非核交联胶束的小,具有良好的缓释效果。  相似文献   

14.
We report on the use of block copolymer micelles of polystyrene-b-poly(acrylic acid) (PS-b-PAA) as matrixes for incorporating dibenzyl diselenide. We found that the water-insoluble diselenide, after being incorporated into the micelles, demonstrates glutathione peroxidase (GPx) activity in water. Surprisingly, the mimicking system can be adjusted to show higher GPx activity by increasing the ionic strength of the solution simply upon addition of NaCl. Moreover, dibenzyl diselenide incorporated into the micelles is quite stable and maintains its GPx activity even after exposure to the atmosphere.  相似文献   

15.
An out line and summary of literature studies on interactions between different types of amphiphilic copolymer micelles with surfactants has been given. This field of research is still emerging and it is difficult presently to make generalisations on the effects of surfactants on the copolymer association. The effects are found to be varied depending upon the nature and type of hydrophobic (hp) core and molecular architecture of the copolymers and the hydrocarbon chain length and head group of surfactants. The information available on limited studies shows that both anionic and cationic surfactants (in micellar or molecular form) equally interact strongly with the associated and unassociated forms of copolymers. The beginning of the interaction is typically displayed as critical aggregation concentration (CAC), which lies always below the critical micelle concentration of the respective surfactant. The surfactants first bind to the hydrophobic core of the copolymer micelles followed by their interaction with the hydrophilic (hl) corona parts. The extent of binding highly depends upon the nature, hydropobicity of the copolymer molecules, length of the hydrocarbon tail and nature of the head group of the surfactant. The micellization of poly(ethylene oxide) (PEO)–poly(propylene oxide) (PPO)–poly(ethylene oxide) was found to be suppressed by the added surfactants and at higher surfactant concentrations, the block copolymer micelles get completely demicellized. This effect was manifested itself in the melting of liquid crystalline phases in the high copolymer concentrations. However, no such destabilization was found for the micelles of polystyrene (PS)–poly(ethylene oxide) copolymers in water. On the contrary, the presence of micellar bound surfactant associates resulted in to large super micellar aggregates through induced intra micellar interactions. But with the change in the hydrophobic part from polystyrene to poly(butadiene) (PB) in the copolymer, the added surfactants not only reduced the micellar size but also transformed cylindrical micelles to spherical ones. The mixtures in general exhibited synergistic effects. So varied association responses were noted in the mixed solutions of surfactants and copolymers.  相似文献   

16.
The dendritic unimolecular polymeric micelles with a hydrophobic dendritic polyester (Boltorn H40) as the core and the grafted biocompatible poly(N, N-diethylacrylamide)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDEAAM-b-PDMAEMA) as the shell were synthesized by successive reversible addition–fragmentation transfer (RAFT) polymerization of N, N-diethylacrylamide (DEAAM) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) monomers. Laser light scattering studies indicated that the resulting unimolecular polymeric micelles H40–PDEAAM–PDMAEMA with double stimuli-responsive shells exhibited a reversible two-stage phase transition behavior. The effect of varying the block length of PDMAEMA on the thermosensitivity of unimolecular polymeric micelles was studied. With an increase in the outer corona length of PDMAEMA, the temperature range of phase transition for the inner shell PDEAAM would become broad. As pH decreased to 2, the high hydrophilic PDMAEMA blocks with high protonation were independent of temperature, and the size of unimolecular polymeric micelles increased due to the extended-chain conformation of outer layer. The internal core cavities of the unimolecular polymeric micelles exhibited a great potential of loading guest molecules according to the analysis of pyrene probe fluorescence spectra.  相似文献   

17.
Soft polymeric nanomaterials were synthesized by template-assisted method involving condensation of the poly(ethylene oxide)-b-polycarboxylate anions by metal ions into core-shell block ionomer complex micelles followed by chemical cross-linking of the polyion chains in the micelle cores. The resulting materials represent nanogels and are capable of swelling in a pH-dependent manner. The structural determinants that guide the self-assembly of the initial micelle templates and the swelling behavior of the cross-linked micelles include the block ionomer structure, the chemical nature of metal ions, the structure of the cross-links and the degree of cross-linking. The application of these materials for loading and release of a drug, cisplatin, is evaluated. These cross-linked block ionomer micelles have promise for delivery of pharmaceutical agents. The text was submitted by the authors in English. This work was supported by the grants from U.S.A. National Institute of Health CA116590 (T.B.), National Science Foundation DMR-0513699 (A.V.K. and T.B.) and Department of Defense USAMRMC 06108004 (A.V.K.).  相似文献   

18.
19.
In contrast to self-assembled aggregates of conventional ionic (including polymeric) surfactants the equilibrium micelles of diblock copolymer with a pH-sensitive polyelectrolyte block can exhibit two inverse sequences of morphological transitions triggered by an increase in solution salinity. The direct sequence of the sphere-cylinder-lamella transitions is similar to that for the copolymer with a strongly dissociating ionic block and occurs at a high salt concentration in solution. The abnormal reversed sequence of the lamella-cylinder-sphere transitions is predicted to occur at relatively low ionic strength in solution. The origin of the reentrant transitions is coupling between aggregation and ionization in copolymer micelles.  相似文献   

20.
We report on assembly and stimuli-response behavior of layer-by-layer (LbL) films of pH- and temperature-responsive cationic diblock copolymer micelles (BCMs) of poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM) and a linear polyanion polystyrene sulfonate (PSS). As a function of solution pH at temperatures above lower critical solution temperature (LCST) of PNIPAM, PDMA-b-PNIPAM micelles have been demonstrated earlier to exhibit an abrupt change in micellar aggregation number and hydrodynamic size between larger and smaller BCMs (LBCMs and SBCMs, respectively). Here, LBCMs or SBCMs were included within LbL films through self-assembly with a polyanion, and film pH and temperature responses were studied using ellipsometry and atomic force microscopy (AFM). Both types of micelle preserved their micellar morphology when adsorbed at the surface of oxidized silicon wafers coated with PSS-terminated precursor layer at a constant pH. Response of adsorbed BCMs to temperature and pH variations was strongly dependent on whether or not BCMs were coated with the PSS layer. While monolayers of LBCMs lost their original dry morphology in response to pH or temperature variations, depositing a PSS layer atop LBCMs inhibited such irreversible restructuring. As a result of wrapping around and strong binding of PSS chains with LBCM micelles, BCM/PSS assemblies preserved their original dry state morphology despite the application of pH and temperature triggers. However, the wet-state film response to pH and temperature stimuli was drastically different. Swelling of BCM/PSS multilayers was strongly affected by temperature but was almost independent of pH due to neutralization of BCM PDMA's coronal charge with PSS. Cycling the temperature below and above PNIPAM's LCST caused PNIPAM chains within BCM cores to swell or collapse, resulting in reversible swelling transitions in the entire BCM/PSS assemblies. Temperature-controlled switching between the hydrophobic and hydrophilic state of assembled micellar cores was also used to regulate the release of a micelle-loaded hydrophobic pyrene dye, whose release rate increased at temperatures below PNIPAM's LCST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号