首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NIRer there : Pyrrolopyrrole cyanine (PPCys) dyes, a new class of near‐infrared (NIR) fluorophores, are obtained by condensation of heteroarylacetonitrile and diketopyrrolopyrrole compounds (see picture). Complexation with BF2 or BPh2 yields strongly fluorescent, photostable NIR dyes that show high absorption cross‐sections and fluorescence quantum yields. Furthermore, alteration of the heterocycle can tune the main absorption between λ = 684 and 864 nm.

  相似文献   


2.
Novel fluorescent dyes, thiazole-boron complexes bearing β-ketoiminate ligands, have been synthesized, and their fluorescence properties were investigated. The BF(2) complexes showed a pronounced aggregation-induced emission enhancement effect because of the restriction of C-Ph intramolecular rotation. The BPh(2) complexes showed higher fluorescence quantum yields than the corresponding BF(2) complexes, both in solution and in the solid state.  相似文献   

3.
Abstract— The luminescence of acridine dyes intercalated in DNA was studied as a function of the concurrent binding of metal ions to DNA, in an effort to deduce specific site interactions of the dyes. Two dyes, proflavine (PF) and acridine orange (AO), and two metal ions, silver and mercuric, were used. Both ions quench the fluorescence of the dyes in aqueous solution at room temperature. The metal ions have a different effect on the fluorescence of these dyes when they are intercalated between the base pairs of DNA. The fluorescence of AO is decreased when silver is bound, while the fluorescence of PF is enhanced. Since Ag+ initially binds to GC sites in DNA, which quench the PF fluorescence, it ostensibly 'turns off' the quenching by DNA at these sites, and this effect is greater than the quenching effect of the silver ion itself. Hg2+ ion initially binds to AT sites in DNA. Since both dyes fluoresce from AT sites, Hg2+ is expected to quench their fluorescence. This behavior is observed at low r (metal ion/base). At higher r values, however, where Hg2+ is expected to begin binding to GC sites, the fluorescence of PF is enhanced. These quenching turn-off effects are tentatively interpreted in terms of a change in the structure of the dye/DNA complex which occurs when a metal ion binds at the intercalation site. At 77 K. no fluorescence enhancement is observed when metal ions bind; Ag+ quenches the fluorescence and enhances the phosphorescence of both dyes. Qualitatively similar results are obtained with Hg2+.  相似文献   

4.
Absorption, steady-state fluorescence, steady-state fluorescence anisotropy, and intrinsic and induced circular dichroism (CD) have been exploited to explore the binding of calf thymus DNA (ctDNA) with three cationic phenazinium dyes, viz., phenosafranin (PSF), safranin-T (ST), and safranin-O (SO). The absorption and fluorescence spectra of all the three dyes reflect significant modifications upon interaction with the DNA. A comparative study of the dyes with respect to modification of fluorescence and fluorescence anisotropy upon binding, effect of urea, iodide-induced fluorescence quenching, and CD measurements reveal that the dyes bind to the ctDNA principally in an intercalative fashion. The effect of ionic strength indicates that electrostatic attraction between the cationic dyes and ctDNA is also an important component of the dye-DNA interaction. Intrinsic and induced CD studies help to assess the structural effects of dyes binding to DNA and confirm the intercalative mode of binding as suggested by fluorescence and other studies. Finally it is proposed that dyes with bulkier substitutions are intercalated into the DNA to a lesser extent.  相似文献   

5.
The time-dependent fluorescence changes of photosensitizing porphyrins and tetrasulphonated chloroaluminiumphthalocyanine (A1C1SPc) were measured at different intracellular sites using video-enhanced microscopy and image processing. To obtain variations in intracellular fluorescence intensity, different radiant exposures of a Kr+ laser-pumped dye laser were delivered via a 600 microns plastic-clad silica fibre connected to the microscope. During irradiation, competition between photobleaching and fluorescence increase of the different dyes was observed. The porphyrins normally showed photobleaching, which was dependent on the sensitizer and its specific accumulation within the cell. Photobleaching was less pronounced for hydrophilic uroporphyrin than for more hydrophobic dyes. In contrast with an almost exponential decrease in porphyrin fluorescence with increasing light dose, the fluorescence intensity of A1C1SPc significantly increased at the beginning of irradiation, and could be correlated with intracellular deaggregation.  相似文献   

6.
The potential of cucurbiturils, water-soluble macrocyclic host molecules composed of glycoluril units, for tuning the properties of fluorescent dyes and advancing new applications is illustrated. Cucurbit[7]uril (CB7), which presents a particularly attractive derivative due to its intermediary size and high water solubility, has been shown to display a variety of advantageous effects on fluorescent dyes, which include increased fluorescence intensity and brightness, enhanced photostability, protection towards fluorescence quenchers, solubilization, and deaggregation. Particularly noteworthy is the prolongation of the fluorescence lifetimes of different dyes, which can be traced back to the low polarizability of the host cavity. In addition, the host serves as cation receptor, which causes a considerable shift of protonation equilibria and assists the protonation of fluorescent dyes. The latter effect can be exploited in the design of protolytic fluorophore displacement assays. The perspective of cucurbiturils as stabilizers for laser dyes, enhancement agents in time-resolved fluorescence (TRF) assays, contrast agents for fluorescence lifetime imaging (FLIM), and dyes for fluorescent collectors for solar cells is mentioned. Original experimental results for the effect of CB7 on the fluorescence properties of three dyes (Macrolex Yellow 10 GN, Dapoxyl, and 4-(dimethylamino)benzonitrile) are presented.  相似文献   

7.
Novel fluorescent, conformationally restricted dipyrromethene boron difluoride (BODIPY) dyes have been prepared by introducing a naphthalenyl group at the meso position of the BODIPY core. These BODIPY dyes exhibit increased fluorescence quantum yields compared with dyes that have a meso-position phenyl group with internal rotation. The absorption and emission wavelengths of such conformationally restricted BODIPY dyes can be easily tuned to the near-IR range by derivatization through a condensation reaction with benzaldehyde derivatives. The two-photon absorption properties of these BODIPY dyes were also investigated and the results show that they exhibit increased two-photon excited fluorescence compared to analogue dyes that contain a phenyl group. The one- and two-photon fluorescence imaging of living cells by using selected BODIPY dyes has been successfully demonstrated.  相似文献   

8.
With the objective of developing near-infrared fluorescence probes for biological applications, a few squaraine dyes 3a-d, containing amphiphilic substituents, were synthesized and their photophysical properties have been investigated in the presence and absence of the organized media. These dyes exhibited absorption in the range 630-650 nm, with significant absorption coefficients (epsilon = 1-3 x 10(5) M(-1) cm(-1)) in the aqueous medium. The fluorescence spectra of these dyes showed emission maximum from 660 to 675 nm, depending on the nature of substituents. The fluorescence quantum yields were in the range from 0.15 to 0.21 in ethanol, but 10 times lower values were observed (phi(f) = 0.01-0.02) in the aqueous medium. In the presence of micelles such as cetyltrimethylammonium bromide, sodium dodecyl sulfate, and Triton X-100, these dyes showed negligible changes in their absorption properties, whereas a significant enhancement (5-10-folds) in their fluorescence yields was observed. Picosecond time-resolved studies indicated that these dyes show single-exponential decay in ethanol and ethanol-water mixtures; however, they exhibit biexponential decay with longer lifetimes in the presence of the micellar media. The results indicate that these novel amphiphilic squaraine dyes 3a-d, which exhibit favorable photophysical properties, good solubility in the aqueous medium, and interact efficiently with micelles, can have potential biological applications as near-infrared fluorescence sensors.  相似文献   

9.
The colour change of triphenylmethane (TPM) dyes induced by surfactants at concentrations much greater than their critical micellar concentrations is found to be accompanied by enhanced fluorescence. Thus, the otherwise weak fluorescence of TPM dyes can be detected using supramicellar surfactant concentrations. In this respect, the nonionic polyoxyethylene (POE) chain-containing surfactants are found to be more efficient compared with ionic surfactants. The POE surfactants, Triton X-100, Tween-20 and Tween-60 present a polymer-like surface to the dyes, which can thus easily bind to them. At supramicellar concentrations, the hydrophobic environment formed in these micelles is effective in preventing nonradiative relaxation processes of the dyes. As a result, there is enhanced fluorescence for even micromolar concentrations of the dyes. Among the Tween series, Tween-60 being more hydrophobic leads to greater fluorescence enhancement than Tween-20. From the fluorescence properties, binding constants for dye binding to the surfactants can be determined. Thus the relative efficiency of these surfactants as binding substrates can be assessed. Another interesting observation is that the electrolyte LiCl in presence of the surfactants leads to even larger fluorescence enhancement than the surfactants alone.  相似文献   

10.
Photophysics of xanthene dyes in surfactant solution   总被引:1,自引:0,他引:1  
The spectral (both absorption and fluorescence) and photoelectrochemical studies of some anionic xanthene dyes namely erythrosine B, rose bengal and eosin have been carried out in micellar solution of cationic cetyl trimethyl ammonium bromide (CTAB), anionic sodium dodecyl sulphate (SDS) and neutral triton X-100 (TX-100). The results show that all these dyes form 1:1 electron-donor-acceptor (EDA) or charge-transfer (CT) complexes with TX-100, which acts as an electron donor. There is no interaction of these dyes with SDS, whereas the interaction with CTAB is mainly electrostatic in nature. In presence of TX-100, these dyes show enhancement of fluorescence intensity with a red shift and develop photovoltage in a photoelectrochemical cell. A good correlation has been found among the photovoltage generation in the systems consisting of these dyes and TX-100, spectral shift due to complex formation and thermodynamic properties of these complexes.  相似文献   

11.
The spectral (both absorption and fluorescence) and photoelectrochemical studies of a few selective dyes, namely, anionic erythrosin B, neutral riboflavin and cationic safranin O have been carried out in aqueous solution of triton X-100, a neutral surfactant. The results show that the ionic dyes, erythrosin B and safranin O form 1:1 electron donor-acceptor (EDA) or charge-transfer (CT) complexes with triton X-100 both in the ground and excited states, whereas neutral dye riboflavin in its excited state forms 1:1 complex with triton X-100. In these complexes, the dyes act as electron acceptors whereas triton X-100 acts as an electron donor. The fluorescence spectra of erythrosin B and safranin O in presence of triton X-100 show enhancement of fluorescence intensity with red and blue shifts respectively while riboflavin shows normal quenching of fluorescence. A good correlation has been found among photovoltage generation of the systems consisting of these dyes and triton X-100, spectral shift due to complex formation and thermodynamic properties of these complexes.  相似文献   

12.
Boron dipyrromethene dyes bearing nitro, amino, isocyanate and isothiocyanate functions were readily prepared under mild conditions. Various combinations allow to produce urea, diurea, thiourea, dithiourea in the 3, 4 and 5-substitution positions of the appended phenyl group. Condensation of the 3,4-substituted diamino derivative with 1,10-phenanthroline-5,6-dione and 6-formyl-2-methylpyridine allow to prepare dipyridophenazine and indole derivatives. The 3,5-dinitro-substituted indacene dye was characterized by an X-ray molecular structure showing a pronounced tilt angle of the dinitrophenyl group relative to the indacene core (approximately 84 degrees) whereas one nitro groups is basically coplanar with the phenyl ring and the second titled by approximately 21 degrees. The optical properties of these dyes reveals on/off switching of the fluorescence from the nitro to the amino compounds and further to the urea likely understood in the framework of an photoinduced electron transfer process.  相似文献   

13.
A 3 x 14 matrix of substituted N-aryl-1,8-naphthalimides was synthesized for the evaluation and discovery of dual fluorescence. Because of their unique photophysical properties, these dual fluorescent systems represent an exception to the widely studied TICT (Twisted Internal Charge Transfer) fluorescent dyes or tautomeric benzofluorescein class of two-color dyes. The matrix library was designed to investigate the effects of heterocycles, particularly pi-excessive and pi-deficient systems. Of the 42 compounds surveyed, five displayed well-resolved two-color emission in solvents as nonpolar as hexane. Based on the observed trends in fluorescence lambda(max) and quantum yield, a new model is proposed that predicts LW and SW emission for these systems. In addition, this model provides potential design features for the synthesis of new dual fluorescent species.  相似文献   

14.
The photophysical properties of newly synthesized bischromophoric solvatochromic stilbazolium dyes, 1,3-bis-[4-(p-N,N-dialkylaminostyryl)pyridinyl]propane dibromides (C1-C9), were studied in a series of solvents and their spectroscopic properties were compared with structurally related, monochromophoric styrylpyridinium dyes (SP1-SP9). The position of the UV-vis absorption spectra maximum of novel dyes is only slightly solvent polarity dependent in contrast to the fluorescence spectra that show pronounced solvatochromic effect demonstrated by a large Stokes shifts. The influence of the solvent on absorption and emission spectra, and the solvatochromic properties observed for both ground and first excited states for all the dyes were used for the evaluation of their excited state dipole moments. The ground state dipole moments of both mono- and bischromophoric dyes were established by applying ab initio calculations. The calculations and measurements unexpectedly show that the bischromophoric dyes are characterized by ground state dipole moments being equal to about half of that characterizing their monomeric equivalents, while the excited state dipole moments of bischromophoric dyes are about 10-25% higher in comparison to their monomeric equivalents.  相似文献   

15.
《化学:亚洲杂志》2017,12(2):233-238
Unsymmetrical cyanine dyes, such as thiazole orange, are useful for the detection of nucleic acids with fluorescence because they dramatically enhance the fluorescence upon binding to nucleic acids. Herein, we synthesized a series of unsymmetrical cyanine dyes and evaluated their fluorescence properties. A systematic structure–property relationship study has revealed that the dialkylamino group at the 2‐position of quinoline in a series of unsymmetrical cyanine dyes plays a critical role in the fluorescence enhancement. Four newly designed unsymmetrical cyanine dyes showed negligible intrinsic fluorescence in the free state and strong fluorescence upon binding to double‐stranded DNA (dsDNA) with a quantum yield of 0.53 to 0.90, which is 2 to 3 times higher than previous unsymmetrical cyanine dyes. A detailed analysis of the fluorescence lifetime revealed that the dialkylamino group at the 2‐position of quinoline suppressed nonradiative decay in favor of increased fluorescence quantum yield. Moreover, these newly developed dyes were able to stain the nucleus specifically in fixed HeLa cells examined by using a confocal laser‐scanning microscope.  相似文献   

16.
The fluorescence enhancement mechanisms of a series of DNA stains of the oxazole yellow (YO) family have been investigated in detail using steady-state and ultrafast time-resolved fluorescence spectroscopy. The strong increase in the fluorescence quantum yield of these dyes upon DNA binding is shown to originate from the inhibition of two distinct processes: 1) isomerisation through large-amplitude motion that non-radiatively deactivates the excited state within a few picoseconds and 2) formation of weakly emitting H-dimers. As the H-dimers are not totally non-fluorescent, their formation is less efficient than isomerisation as a fluorescent contrast mechanism. The propensity of the dyes to form H-dimers and thus to reduce their fluorescence contrast upon DNA binding is shown to depend on several of their structural parameters, such as their monomeric (YO) or homodimeric (YOYO) nature, their substitution and their electric charge. Moreover, these parameters also have a substantial influence on the affinity of the dyes for DNA and on the ensuing sensitivity for DNA detection. The results give new insight into the development and optimisation of fluorescent DNA probes with the highest contrast.  相似文献   

17.
Abstract— The successful implementation of ultrasensitive fluorescence spectroscopy of biological and chemical species depends upon certain photophysical parameters associated with the fluorescent dye used in the investigation. These parameters include the fluorescence quantum efficiency, photodestruction quantum efficiency, absorption cross section and fluorescence lifetime. These photophysical constants were measured for several fluorescent dyes that are used for the tagging of biological species. Three different solvents, ethanol, water and a cationic surfactant used above its critical micelle concentration, were studied. The effective photon yield (ratio of the fluorescence quantum yield to the photodestruction quantum efficiency) for the dyes is nearly 100 times greater in ethanol than it is in water because of the superior photostabilities of these dyes in ethanol solvents. The implications of these parameters for the design of an ultrasensitive fluorescence experiment are discussed.  相似文献   

18.
We recently reported that fluorescent dye PB430, which consisted of a 2‐phenyl‐substituted benzophosphole P‐oxide skeleton that was reinforced by a methylene bridge, showed pronounced photostability and, thus, high utility for applications in super‐resolution stimulated emission depletion (STED) microscopy. Herein, we replaced the methylene bridge with another P=O group to 1) investigate the role of the bridging moieties; and 2) further modulate the fluorescence properties of this skeleton. We synthesized a series of phospholo[3,2‐b]phosphole‐based dyes—trans‐PO‐PB430, cis‐PO‐PB430, and trans‐PO‐PB460—all of which showed sufficient water solubility. Moreover, trans‐PO‐PB430 and trans‐PO‐PB460 exhibited intense green and orange fluorescence, respectively, and a high photostability that was comparable to that of PB430. In contrast, cis‐PO‐PB430 underwent rapid photobleaching upon continuous photoirradiation, which demonstrated the importance of steric shielding of the polycyclic skeleton by the substituents on the bridging moieties. The fluorescence properties of these dyes were insensitive to concentration, pH value, and polarity changes of the environment in solution. In addition, even in the solid state, these dyes showed strong green to orange emissions. These results demonstrate the potential utility of trans‐PO‐PB430 and trans‐PO‐PB460 as highly photostable fluorescent dyes.  相似文献   

19.
有效的染料激光操作需要较高的荧光量子效率,若丹明是在500~700 nm光谱区中一类最重要的激光染料.然而,染料的基态分子和三线态对辐射能量的吸收将会大大降低激光输出效率,再者,由于若丹明类染料在紫外区的吸收系数较小,为了有效吸收泵浦能量(如用XeCI准分子激光,308 nm),就必须使用高浓度染料溶液,在这种情况下,若丹明类染料较小的Stokes位移就势必造成基态分子更大的重复吸收,即造成更大的谐振腔损耗[1].  相似文献   

20.
New L -shaped fluorophores possessing five conjugated rings have been synthesized through a four-step procedure involving diketopyrrolopyrrole synthesis and its double N-alkylation, followed by trimethylsilyl bromide-mediated rearrangement to thieno[2,3-f]isoindole-5,8-dione and an intramolecular Friedel–Crafts reaction. In comparison with the parent isoindolediones and π-expanded diketopyrrolopyrroles, these new dyes show red-shifted absorption and emission (up to ≈630 nm). Their structural rigidity is responsible for both the observed small Stokes shifts and large fluorescence quantum yields. Tissue imaging studies revealed that these new dyes show advantageous features including minimal autofluorescence interference and pronounced solvent-sensitive emission. Interestingly, there is a fundamental difference between a dye possessing an amino group and its analog bearing an N-alkyl substituent. The former dye under two-photon excitation at 900 nm gives bright images whereas its N-alkylated counterpart does not. A new type of membrane localization has been discovered by an N-alkylated isoindoledione possessing a benzofuryl substituent. In spite of the fact that the fluorescence quantum yield of this dye in a range of solvents is rather low, it does stain cell membranes exclusively. This new mode of cellular staining opens the door towards further development of membrane staining dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号